刀具的发展在人类进步的历史上占有重要的地位。中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。
而刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。
1783年,法国的勒内首先制出铣刀。1923年,德国的施勒特尔发明硬质合金。到采用硬质合金时,效率又比用高速钢提高两倍以上,切削加工出的的工件表面质量和尺寸精度也大大提高。
由于高速钢和硬质合金的价格比较昂贵,1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。
1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。
由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。在选择刀具的角度时,需要考虑多种因素的影响,如工件材料、刀具材料、加工性质(粗、精加工)等,必须根据具体情况合理选择。
常见的刀具材料:高速钢,硬质合金(含金属陶瓷),陶瓷,CBN(立方氮化硼),PCD(聚晶金刚石),因其硬度一个比一个硬,所以一般而言,切削速度也一个比一个高。
刀具材料性能解析
高速钢:
可分为普通高速钢和高性能高速钢。
普通高速钢,如W18Cr4V广泛用于制造各种复杂刀具。其切削速度一般不太高,切削普通钢料时为40-60m/min。
高性能高速钢,如W12Cr4V4Mo是在普通高速钢中再增加一些含碳量、含钒量及添加钴、铝等元素冶炼而成的。它的耐用度为普通高速钢的1.5-3倍。
硬质合金:
按GB2075—87(参照采用190标准)可分为P、M、K三类,P类硬质合金主要用于加工长切屑的黑色金属,用蓝色作标志;M类主要用于加工黑色金属和有色金属,用黄色作标志,又称通用硬质合金,K类主要用于加工短切屑的黑色金属、有色金属和非金属材料,用红色作标志。
P、M、K后面的阿拉伯数字表示其性能和加工时承受载荷的情况或加工条件,数字愈小,硬度愈高,韧性愈差。
陶瓷:
陶瓷材料的耐磨性好,可加工传统刀具难以加工或根本不能加工的高硬材料。此外陶瓷刀具可可免除退火加工所消耗的电力,并因此也可提高工件的硬度,延长机器设备的使用寿命。
陶瓷刀片切削时与金属摩擦力小,切削不易粘接在刀片上,不易产生积屑瘤,加上可以进行高速切削。所以在条件相同时,工件表面粗糙度比较低。刀具耐用度比传统刀具高几倍甚至几十倍,减少了加工中的换刀次数;耐高温,红硬性好。可在1200℃下连续切削.所以陶瓷刀片的切削速度可以比硬质合金高很多。可进行高速切削或实现"以车、铣代磨",切削效率比传统刀具高3-10倍,达到节约工时、电力、机床数30-70%或更高的效果
CBN:
这是目前已知的第二高硬度的物质,CBN复合片的硬度一般为HV3000~5000,具有很高的热稳定性和高温硬度,并且有很高的抗氧化能力,在1000℃时也不产生氧化现象,与铁系材料在1200~1300℃时也不发生化学反应,具有良好的导热性和较低的摩擦系数
聚晶金刚石PCD:
金刚石刀具有硬度高、抗压强度高、导热性及耐磨性好等特性,可在高速切削中获得很高的加工精度和加工效率。由于PCD的结构是取向不一的细晶粒金刚石烧结体,虽然加入了结合剂,其硬度及耐磨性仍低于单晶金刚石。与有色金属和非金属材料间的亲和力很小,在加工过程中切屑不易粘结在刀尖上形成积屑瘤
材料各自的应用范围:
高速钢:主要用在成型刀具和形状复杂等一些需要高韧性的场合;
硬质合金:应用范围最广,基本上都能干;
陶瓷:主要用在硬零件车削和铸铁类零件的粗加工和高速加工;
CBN:主要用在硬零件车削和铸铁类零件的高速加工(一般而言,比陶瓷的耐磨性,抗冲击韧性和抗断裂性能强效率要高一点);
PCD:主要用在有色金属和非金属材料的高效率切削。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈