随着信息化水平的不断发展,以智能制造为主导的第四次工业革命正在各国掀起变革浪潮,不论是德国的工业4.0、美国的工业互联网,还是国内的“中国制造2025”,新一代信息技术与制造业的深度融合正在引发生产方式、产业形态、商业模式和经济增长点的重大变革,“制造”正在向“智造”转变。
智能制造:物理工厂+虚拟工厂
智能制造将物联网、大数据、云计算等新一代信息技术与设计、生产、管理、服务等制造活动的各个环节融合,以智能工厂为载体,采用“物理工厂+虚拟工厂”的形式,实现产业的智造升级。
在智造升级过程中,“物联网”和“大数据”成为智能制造的两个主角。通过应用物联网和大数据,以端到端数据流为基础,以互联互通为支撑,构建高度灵活的个性化和数字化智能制造模式,实现信息深度自感知、智慧优化自决策、精准控制自执行等内容。
盘点2017智能制造与工业大数据的实践更新
*智能制造:物理工厂+虚拟厂
物联网的核心在于运用新一代信息和通信技术,把传感器、感应器等智能装置(信息系统)嵌入到电网、交通、建筑、工厂、货物等各种物体和环境(物理系统)中,通过有线和无线网络加以连接形成物联网,并通过网络和云计算将物联网和互联网的整合,将物体接入信息网络,通过人、生产与产品的实时联通与有效沟通,实现对实体世界的洞察和控制。
大数据分析应用则是物联网的基础上,通过将企业内部全流程运营数据和外部移动互联端、社交媒体端、社会化物联网端,以及延伸到消费者的智慧化物联网数据,纳入到完整的“洞察-响应-提升”闭环式精益管理中,帮助企业充分发挥大数据分析的辅助决策作用。
以制造型工厂为例,工厂以提升质量、降低成本、提高效率为根本目标,通过应用物联网技术,使制造过程中的各种数据源互联互通,实现信息流的自动化,实现制造链条全程可视化,通过大数据分析将海量的隐形数据转化为显性数据,并将信息及决策建议实时提供给生产一线操作工人、主管和高级管理人员,帮助企业增强制造洞察力。
盘点2017智能制造与工业大数据的实践更新
*制造型工厂的应用重点
决策智能化:构建大数据分析能力
随着智能制造的在各领域的推进应用,企业生产过程数字化及管理流程智能化正在逐步实现,但未来,能否实现决策智能化将是拉开企业差距的关键。
何为决策智能化?指的是在自动化和设备智能化的基础上构建大数据分析能力,使“数据”转化为“洞察”,再由洞察产生行动,不仅要从技术上提升洞察分析能力,也要从组织、管控、能力角度同步提升,真正实现“感知-洞察-评估-响应”闭环的顺利运作与循环提升。
blob.png
*大数据分析能力构建
工业大数据在在数据管理阶段,聚焦于信息和数据管理,建立数据管理规则,指导海量数据辨识处理与信息提炼。第二个阶段则是将信息转化为洞察,通过建设相应的运行机制、数据分析平台和数据分析手段,利用数据分析挖掘根因,为管理决策提供支持,包括:支持和管控体系建设、组织和人才管理、获悉洞察管理、洞察到行动的管理等6个方面。第三个阶段由洞察反推业务,通过将分析洞察引入业务运营,实现最优决策的相关工作流程及建立相关评价工具、方法与流程,衡量大数据分析带来的业务洞察对业务产生的实际价值。
随着物联网和大数据分析技术的应用实践,通过数据洞察驱动业务经营管理已成为行业的重要趋势,在此基础上实现商业模式创新、生产模式创新、运营模式创新和科学决策能力等企业目标已经成为可能,物联网和大数据正在帮助企业实现从“制造”向“智造”的转变。
“就像100年前电的发明改变了所有行业、农业、制造业、铁路、通信等等,物联网和大数据未来也或将能为几乎所有行业带来巨大改变。”
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
AMTS & AHTE SOUTH CHINA 2024同期会议全公开!
- 暂无反馈