由于操作过于频繁,请点击下方按钮进行验证!

汽车发动机缸盖、排气管铸造模CAD/CAM技术

缸盖是发动机零件中最复杂的零件之一,它由气道、水套、燃烧室等部分组成,零件形状复杂、结构紧凑,是影响发动机性能的关键零件之一。气道形状有一定的规则,它的变化直接影响发动机的进排气量、压缩比等性能,进而影响发动机的燃烧,关系到发动机的功率、排放等指标。水套的壁厚是否均匀关系到发动机的冷却性能、可靠性等等。然而,缸盖中的气道、水套、燃烧室等部分的零件表面不用机加工、直接铸造成型。因而导致缸盖模具形状复杂、结构紧凑、形状精度要求高、难度大。可以说,缸盖模具是发动机铸造模具中形状最为复杂、难度最大、技术要求最高的模具。缸盖模具的传统设计制造方法周期长、反复次数多、严重制约新产品投放市场的速度。

EQ491发动机是东风汽车公司轻型车建设的关键项目之一,是公司拓宽产品系列,向两翼发展的重中之重。EQ491发动机排气管无进件可替代,且EQ491发动机排气管生产线调试无样件,解决EQ491发动机缸盖和排气管铸造模具的设计制造问题是EQ491发动机生产准备的需要。

主要工作内容和技术方案

本项目由缸盖模具CAD/CAM和排气管模具CAD/CAM组成。根据气道样棒完成气道的3维设计,根据产品工程图、模具二维图完成模具的3维设计和CAM 。

1 EQ491发动机缸盖模具 CDA/CAM 缸盖模具由进、排气道,上、下水套,模样底座和轴孔七套模具组成。

进气道、排气道3维设计。

完成气道理维曲面的构造,设计好的气道经加工后得到的实物经试验验证符合设计要求。

将3坐标测量机测得的气道3维测量点数据经格式转换后输入到 Pro/ENGINEER 软件中,在 Pro/E 软件中利用 PRO/SCAN-TOOLS 模块对输入的网格点进行适当的处理,删除坏点后生成造型曲线,在由造型曲线生成曲面,再用Z向投影得到气道的外轮廓线,利用可视化工具调整外轮廓线,从而得到分型线。然后根据分型线及气道截面变化规律、缸盖螺栓孔定位孔等约束条件调整网格点,重新生成造型曲线,利用可视化动态曲线分析工具调整造型曲线使之光顺。并用光顺后的造型曲线生成气道曲面。再利用 PRO/SCAN-TOOLS 提供的可视化动态曲面分析工具调整气道曲面使之满足气道对形状的要求。利用数字化技术完成气道口与燃烧室的匹配。

进气道、排气道模具3维设计。

将符合设计要求的气道乘以缩放比后定位于模具的相应位置,根据二维图纸完成模具其它部分的3维设计。

上水套、下水套模具3维设计。

发动机缸盖的气道、燃烧室部分壁厚要求均匀,为此首先解决气道燃烧室的等距面的生成问题。但是,由于气道形状复杂,现有的软件无法直接生成气道的等距面,我们利用球头刀刀心距加工面等距的原理和CAM技术生成气道的等距点,根据等距点用反求工程生成气道的等距面。根据二维图纸完成模具的3维设计,解决干涉及过渡问题,修改二维设计错误;采用装配设计方法完成上下模分型面设计。

缸盖铸造模具CAM

根据铸造工艺要求及模具形状完成模具加工的工艺设计,依据工艺设计完成模具加工数控机床走刀轨迹铺设及前后置处理。

2 EQ491 发动机排气管模具 CAD/CAM 排气管模具由3个芯盒和外模四套模具组成。

1 、 2 号芯盒模具计算机辅助设计。

根据产品图纸在计算机内完成排气管管口型面设计,用Z向外轮廓投影得到排气管的分型线,再依据分型线进行分型面的设计,根据二维图纸完成模具的3维设计。

3 号芯盒模具3维设计。

根据模具二维图纸和排气管形状完成模具的 3 维设计,保证排气管壁厚满足要求。

排气管外模模具3维设计。

根据模具二维点纸和排气管形状完成模具的3维设计,保证排气管壁厚满足要求。根据3号芯盒的3维数据采用装配设计方法完成外模与3号芯盒配合面的设计。

排气管铸造模具 CAM 。

根据铸造工艺要求及模具形状完成模具加工的工艺设计,依据工艺设计完成模具加工数控机床走刀轨迹铺设及前后置处理。

3砂芯成型检验 将上下模在计算机里合模,抽取中间的空腔生成高压造型得到的砂芯的3维模型来检验模具 3 维设计的质量。如果将全套模具铸得的砂芯装配在一起就可以验证全套模具之间的定位关系,检验全套模具的设计质量,实现铸件的虚拟制造。

采用的新技术

采用 CAD/CAM 集成和无纸化设计思想来进行模具的设计制造,直接在计算机里完成排气管管口及分型面的设计和 CAM 。研究虚拟制造技术在模具 CAD/CAM 中应用,在计算机里用 PRO/E 软件完成上下模合模,并抽取出砂芯的3维模型。利用可视化动态分析技术完成气道曲面的调整,使气道 3 维曲面光滑光顺,利用数字化技术完成气道口与燃烧室的匹配。采用原方法用了6个月、试切了多次还未能满足要求,采用新方法只用了半个月就完成 3 维设计,仅试切了2次就达到要求。

利用 CAM 原理和反求工程进行水套的气道壁设计,利用先进的 CAD/CAM 软件在计算机直接由产品的三维数据设计模具,利用装配设计进行模具的设计以保证模具的设计质量,利用先进的 CAD/CAM 软件完成模具的3维设计和 CAM 工作,处于国内领先水平。

技术水平与效益分析

当前国外各大汽车公司已广泛采用 CAD/CAM 集成技术进行铸造模具的设计和制造。我国各大汽车厂自80年代中开始引进 CAD/CAM 技术,主要应用于2维绘图、 CAM 技术开始应用。 90年代初,国内各主要汽车厂着手开展 CAD/CAM 的推广应用,均已投入了大量的人力、物力、财力,购入相应的软硬件设备, CAD/CAM 技术得到广泛的推广应用。我们应用可视化技术完成了发动机气道的3维设计,利用数字化技术完成气道口与燃烧室的匹配,应用 CAD/CAM 技术完成了发动机缸盖模具、排气管芯盒及模具的3维设计,利用 CAM 原理和反求工程进行水套的气道壁设计,利用先进的 CAD/CAM 软件在计算机里直接由产品的三维数据设计模具,用装配设计进行模具的设计以保证模具的设计质量,利用先进的 CAD/CAM 软件完成模具的3维设计和 CAM 工作,验证了虚拟制造的可行性,使东风汽车公司的产品开发和铸造模具的设计制造达到了一个新的水平。

通过该项目的实施在较短的时间里完成缸盖、排气管模具的CAD/CAM工作,加速了EQ1030轻型车的生产准备,解决了EQ491发动机生产无铸件的燃眉之急,为EQ491发动机排气管生产线调试提供样件。由于采用了新的气道设计方法,CAD/CAM集成技术使模具的设计制造周期缩短了半年以上,设计质量大大提高,提高了气道3维设计的效率,节省了大量的气道试切费用。采用模具CAD/CAB技术、虚拟制造技术可直观的在计算机上显示出设计中的错误,这样能及时发现并更改设计中的错误,保证了产品质量和模具生产的一次调试成功,节约了大量的调试时间和费用。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • 线下培训 | 2025年海克斯康设计与工程软件公开课计划正式启动
  • 25-01-13
  • 线下培训 | 2025年Q-DAS上海第一季度公开课正在报名
  • 25-01-13
  • 直播预告 | Cradle CFD 新功能与技术介绍
  • 25-01-13
  • 设计仿真 | 马恒达使用Adams与 ODYSSEE机器学习构建频率相关阻尼器准确预测行驶和操纵性能
  • 25-01-13
  • 生产制造 | 海克斯康 ALPHACAM 软件核心功能介绍
  • 25-01-13
  • 宝藏软件库上新,从容应对测量难题
  • 25-01-09
  • Inventor 功能之真知灼见
  • 25-01-09
  • Inventor 支招 | 机翼练习
  • 25-01-09
  • 设计仿真 | 基于Adams与Odyssee机器学习的超跑变速箱机构优化方案
  • 25-01-06
  • 设计仿真 | MSC Nastran高性能求解计算(二)
  • 25-01-06
  • 设计仿真 | Digimat在NVH和热冲击的应用
  • 25-01-06
  • 生产制造 | NCSIMUL模型比较——为安全高效生产保驾护航
  • 25-01-06
  • 质量管理 | 海克斯康数字化管理平台助力传动机械行业质量管理效率提升
  • 25-01-06
  • 2025 PolyWorks 1月&2月教室型培训报名启动!
  • 25-01-03
  • 设计仿真 | 海克斯康 MSC Nastran 助力沃尔沃重型卡车实现最佳 NVH 性能
  • 24-12-30
  • 设计仿真 | Digimat用于碰撞、冲击模拟热塑性塑料材料解决方案
  • 24-12-30
  • 设计仿真 | Adams_Controls变拓扑分析
  • 24-12-30
  • 生产制造 | 产品加工-EDGECAM 高效自动编程-自定义半自动编程篇
  • 24-12-30
  • 质量管理 | 海克斯康质量管理平台数字化纠正预防措施
  • 24-12-30
  • 蔡司软件 | 高效变形分析能力,满足多行业需求
  • 24-12-25
  • 分享到

    相关主题