由于操作过于频繁,请点击下方按钮进行验证!

模具监控仪及模具 注塑模具的热流道技术

  【编者按】热流道注射成型法于20世纪50年代问世,热流道是通过加热的办法来保证流道和浇口的塑料保持熔融状态。热流道模具与普通流道模具相比,具有注塑效率高、成型塑件质量好和节约原料等优点,随着塑料工业的发展,热流道技术正不断地发展完善,其应用范围也越来越广泛。


  热流道是通过加热的办法来保证流道和浇口的塑料保持熔融状态。由于在流道附近或中心设有加热棒和加热圈,从注塑机喷嘴出口到浇口的整个流道都处于高温状态,使流道中的塑料保持熔融,停机后一般不需要打开流道取出凝料,再开机时只需加热流道到所需温度即可。

  热流道注射成型法于20世纪50年代问世,经历了一段较长时间的推广以后,其应用普及率逐年上升。80年代中期,美国的热流道模具占注射模具总数的15%~17%,欧洲为12%~15%,日本约为10%。但到了90年代,美国生产的塑料注射模具中热流道模具已占40%以上,在大型制品的注射模具中则占90%以上。

  热流道系统的优势

  节约原料、降低制品成本是热流道模具最显着的特点。普通浇注系统中要产生大量的料柄,在生产小制品时,浇注系统凝料的重量可能超过制品的重量。由于塑料在热流道模具内一直处于熔融状态,制品不需修剪浇口,基本上是无废料加工,因此可节约大量原材料。由于不需废料的回收、挑选、粉碎、染色等工序,故省工、省时、节能降耗。注射料中因不再掺入经过回收加工的浇口料,故产品质量可以得到显着地提高,同时由于浇注系统塑料保持熔融,流动时压力损失小,因而容易实现多浇口、多型腔模具及大型制品的低压注塑。热浇口利于压力传递,在一定程度上能克服塑件由于补料不足而形成的凹陷、缩孔、变形等缺陷。

  适用树脂范围广、成型条件设定方便。由于热流道温控系统技术的完善及发展,现在热流道不仅可以用于熔融温度较宽的聚乙烯、聚丙烯,也能用于加工温度范围较窄的热敏型塑料,如聚氯乙烯、聚甲醛等。对易产生流涎的聚酰胺(PA),通过选用阀式热喷嘴也能实现热流道成型。

  另外,操作简化、缩短成型周期也是热流道模具的一个重要特点。与普通流道相比,缩短了开合模行程,不仅制件的脱模和成型周期缩短,而且有利于实现自动化生产。据统计,与普通流道相比,改用热流道后的成型周期一般可以缩短30%左右。

  热流道系统的结构

  热流道系统一般由热喷嘴、分流板、温控箱和附件等几部分组成。热喷嘴一般分两种:开放式热喷嘴和针阀式热喷嘴。由于热喷嘴形式直接决定热流道系统选用和模具的设计制造,因而常相应的将热流道系统分为开放式热流道系统和针阀式热流道系统。

  分流板在一模多腔或者多点进料、单点进料但料口偏置时采用。材质通常采用P20或H13。分流板一般分为标准和非标准两大类,其结构形式主要由型腔在模具上的分布情况、喷嘴排列及浇口位置来决定。

  温控箱包括主机、电缆、连接器和接线插座等。

  热流道附件通常包括:加热器和热电偶、流道密封圈、接插件及接线盒等。

  热流道系统的分类

  一般说来,热流道系统分为单头热流道系统、多头热流道系统以及阀浇口热流道系统。

  单头热流道系统主要由单个喷嘴、喷嘴头、喷嘴连接板、温控系统等组成。单头热流道系统塑料模具结构较简单,将熔融状态的塑料由注射机注入喷嘴连接板,经喷嘴到达喷嘴头后,注入型腔。

  多头热流道系统塑料模具结构较复杂,熔融状塑料由注射机注入喷嘴连接板,经热流道板流向喷嘴后到达喷嘴头,然后注入型腔。热流道系统的喷嘴与定模板有径向尺寸配合要求和轴向尺寸限位要求。

  阀浇口热流道系统塑料模具结构最复杂。它与普通多头热流道系统塑料模具有相同的结构,另外还多了一套阀针传动装置控制阀针的开、闭运动。该传动装置相当于一只液压油缸,利用注射机的液压装置与模具连接,形成液压回路,实现针阀的开闭运动,控制熔融状态塑料注入型腔。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • Leitz Reference加持,SUMCA公司开启高精度模具检测新时代
  • 25-01-03
  • 海克斯康工业质量校园行2024圆满收官,2025蓄势待发!
  • 25-01-03
  • 2025 PolyWorks 1月&2月教室型培训报名启动!
  • 25-01-03
  • 铸就AI服务器质量动脉 – 高速背板连接器新趋势(三)
  • 25-01-03
  • 电芯无损三维检测:蔡司工业 CT 技术助力新能源汽车电池质量提升
  • 25-01-03
  • 「ZEISS INSPECT 2025」重磅上线,焕新升级!
  • 25-01-03
  • 元启新程—与“尼”回顾2024
  • 24-12-31
  • 定格2024,海克斯康的中国故事
  • 24-12-31
  • 浪尖上的创新 | 海克斯康以科技重塑冲浪板的绿色未来
  • 24-12-31
  • 数控五轴模拟训练机大显身手,竞赛数字孪生应用迎来新突破
  • 24-12-31
  • 小身量大效能 | 高效精准的车身内间隙检测方案
  • 24-12-31
  • 高度尺测平面度和三坐标测平面度的差异讨论
  • 24-12-30
  • GD&T | 尺寸要素的位置度在MMC时零工差和可逆原则的应用
  • 24-12-30
  • 确定机床精度的 4 种方法
  • 24-12-30
  • 产教融合 | 蔡司与上饶宇瞳学校携手共创工业质量教育新篇章
  • 24-12-27
  • 集团资讯 | 蔡司全息显示技术,升级乘客出行体验
  • 24-12-27
  • FARO 移动扫描仪 迎战建筑行业中的挑战
  • 24-12-27
  • 工业4.0时代下机器人革命:雷尼绍工业自动化解决方案深度解析
  • 24-12-27
  • 教育领域案例 | 形创三维扫描仪:汽车工业职业培训的关键助手
  • 24-12-26
  • 中观2025新年寄语:创新为帆,共启数字化新征程
  • 24-12-26
  • 分享到

    相关主题