航空制造领域一直是先进技术高度密集的行业之一,主要是因为航空产品的零部件形状和结构复杂、材料多种多样、加工精度要求严格。航空产品零件制造的复杂性主要体现在:(1)通常带有复杂的理论外形曲面、纵横交错的加强筋结构、厚度较小的薄壁结构等;(2)零件材料以高强度铝合金、钛合金、高温合金、不锈钢、复合材料、蜂窝结构为主,多数为难加工材料;(3)现代飞机具有长寿命、高可靠性要求,这使零件表面的质量控制要求更为严格;(4)越来越多地采用整体结构设计,零件的外廓尺寸也越来越大。为满足航空产品的设计性能与使用要求,零部件的制造往往采用多种工艺手段,如切削加工、电物理加工、电化学加工、束流加工、精密铸造及精密锻造等,其中切削加工仍然是目前在航空制造领域应用最多、使用最广的加工方法。
在现代飞机和发动机的主承力结构中,整体结构件所占的比例快速增加,这类零件通常采用整体毛坯(板材或锻件)进行切削加工,零件成品的重量只有毛坯的10%~20%,其余的80%~90%材料都成了切屑。飞机机体的梁、框、肋、壁板以及发动机的压气机风扇、整体叶盘等都是现代飞机、航空发动机的关键零件,使用的材料涉及高强铝合金、钛合金、高温合金、复合材料等,大多以整体结构为主,结构复杂、材料去除量大、精度及表面质量要求高,加工周期较长。这些零件的切削加工过程对于实现高效、准确加工有着迫切的需求。
切削加工一直是零件加工的主要技术手段之一,尽管随着科学技术的进步与发展,新的加工方法不断涌现并且得到了日益广泛的应用,但是切削加工仍然是目前应用最多、使用最为广泛的加工方法,对于尺寸和形状的配合精度要求越高的零件,就越需要采用切削加工手段来完成,至今还没有更好的加工方法[1]。
切削刀具是支撑和促进切削加工技术进步的关键因素。近年来,高速高效数控机床的广泛应用使现代切削加工技术发展到了一个新的阶段,先进高效刀具的应用是使昂贵的数控机床充分发挥其高效加工能力的基本前提之一。
切削刀具的应用基础
制造技术一直是伴随人类文明的发展而前进的。18世纪后期,有移动刀架和导轨的机床的出现标志着机械加工生产时代的开始。随着19世纪新型冶炼技术、内燃机技术、电气技术的发明与完善,以及H·福特大规模生产方式和泰勒科学管理理论的出现,机械制造业开始进入大批量生产时代。切削加工是现代制造技术中最基本的加工方法之一,它是利用刀具(或工具)去除被加工对象上多余的材料,从而得到形状、精度和表面质量都符合预定要求的表面。在由机床、刀具、工件和夹具组成的切削加工工艺系统中,刀具是富于变化、影响加工状态的活跃因素。
刀具材料的选择与发展是实现切削加工过程、推动切削加工技术进步的关键。人类使用工具是从天然材料开始的,经过石器时代、青铜时代、铁器时代的发展,准备切削工具经过石头、兽骨、青铜制备切削/切割工具,发展到工具钢、高速钢、硬质合金、陶瓷、超硬合金制成的先进切削刀具,被加工材料也从石头、木材、兽骨等天然材料发展到铜、铁、钢、各类金属合金、非金属材料等不同的类型,到现在已经形成了金属材料、陶瓷材料、有机高分子材料“三足鼎立”的新局面,而由2种以上在物理和化学性质上不同的物质结合起来而得到的多项固体材料——复合材料是现代材料革命的一个重要方向[2],在构件制造过程中也同样需要切削加工技术。
刀具性能的优劣取决于构成刀具的材料和结构。刀具材料的切削性能必须满足以下基本要求:
(1)硬度。刀具材料必须高于工件材料的硬度,现代刀具材料常温硬度通常要求在HRC60以上。
(2)强度和韧性。较高的强度则能承受较大的切削力,较好的韧性可以承受较大的冲击载荷和振动。
(3)耐磨性。刀具材料应具有较好的抵抗磨损的能力,是刀具材料强度、硬度和组织结构等因素的综合反映。
(4)热硬性。刀具在高温下保持材料硬度、强度、韧性和抗氧化的能力[3]。
各种不同的刀具材料只能在一定温度范围下维持其切削性能,常见刀具材料的主要性能和正常工作温度。
切削加工过程中,刀具切削刃要承受高切削温度、高压强、高应变速率,这就要求刀具既要有较高的高温硬度和耐磨性能,又要有较高的强度和韧性,刀具涂层技术和刀具表面处理技术便是为满足切削加工对刀具材料的这些综合性能要求而发展起来的。涂层刀具是采用物理或化学方法,在刀具基体材料上覆盖一层或多层耐高温、耐磨损的涂层材料,使刀具既有强韧的基体,又具有高硬度、高耐磨性的表面。基本的刀具涂层材料可分为单涂层、多元涂层、软涂层等[4],常见的涂层材料性能和应用范围如表2所示。单一涂层在应用中有一定的局限性,而多涂层结构在现代涂层刀具中使用较广泛,多层涂层可以有效地改善涂层的组织结构,提高刀具的使用性能。由于涂层材料的耐熔结、耐磨损和耐热性能优于基体,因此能以超过基材的切削速度进行切削。此外,由于涂层的摩擦系数小,因而可以延长刀具的使用寿命。
航空零件切削加工中刀具的应用现状
航空产品零件使用的材料主要涉及高强钢、铝合金、钛合金、高温合金、复合材料等多种类型。飞机机体上涉及切削加工的零件主要使用铝合金、钛合金、复合材料、高强度钢等材料,其结构尺寸大,尺寸协调部位多;航空发动机上涉及切削加工的零件主要使用钛合金、高温合金、不锈钢、复合材料,其加工精度要求较高。
从加工形式上看,飞机机体结构件以机翼梁、机身框、翼肋、壁板为典型代表,零件形式为扁平形结构,尺寸较大,带有机身、机翼理论外形。这类零件主要以铣削加工为主,采用不同形式的铣削刀具在龙门结构、五轴联动的数控铣床上完成加工,常用的刀具有盘铣刀、立铣刀、球头铣刀等,更为常用的是带有刀尖圆角的专用铣刀;航空发动机零件以机匣、整体叶盘、叶片以及轴、盘为典型代表,除轴、盘类零件适合采用车削加工外,其他零件为回转形结构,部分部位需要车削加工,大部分涉及安装及气流通道的部位还需要在五坐标联动控制、转台结构的数控机床上进行铣削加工,加工过程都需要多种形式和结构的刀具,如外圆车刀、内圆车刀、立铣刀、球头铣刀等。
在零件加工过程中,镶齿刀具、焊接式刀具、整体刀具都有广泛的应用,近年来,镶齿刀具、整体刀具逐渐成为现场主要使用的刀具结构,焊接式刀具应用范围已逐渐缩小。这些刀具主要来源于3个途径:企业自制、国内专业生产厂和国外刀具供应商,其中高档刀具主要以国外刀具厂商的产品为主,国产刀具的主要问题是制造精度较低、表面处理技术尚存在差距、刀具质量不够稳定,各批次刀具的精度和寿命有时不一致,从而导致生产现场难以稳定控制零件加工精度的一致性。
高速加工已经进入实用化阶段,飞机结构件是应用高速加工的主要领域,特别是在铝合金结构件、复合材料构件的切削中应用广泛。目前,铝合金材料切削速度已达到1500~5500m/min(最高速度为5000~7500m/min),铸铁精加工和半精加工速度为500~1500m/min,精铣灰铸铁最高可达2000m/min,普通钢为300~800m/min,淬硬钢(HRC45~65)速度为100~500m/min[5]。高速加工的切削速度为常规切削的5~10倍,刀具的安全性、高温稳定性、动平衡已成为高速加工刀具的关键。目前,航空零件切削加工现场配备的高速铣削设备主轴转速已经达到24000r/min,使用的高速切削加工刀具主要以国外品牌为主,铝合金零件切削速度已经达到1300m/min以上。高速铣削加工中使用的刀具主要是镶齿、整体2种结构的硬质合金刀具,新型超硬材料(如PCD、PCBN)刀具则应用较少。
航空产品零件的加工通常需要使用数量不等、规格和结构不同的刀具才能完成,并且要求不同刀具加工的表面之间连续、无接差、无干涉。在大多数情况下,生产现场中切削刀具的应用主要还是粗放型的,对于切削刃形状对加工精度的影响、粗精加工刀具的接刀误差、刀具安装调整精度等问题缺少细致、深入地分析和控制,主要通过对刀仪、机床上对刀和名义尺寸值获得刀具的直径、安装长度、关键部位的尺寸(如刀尖圆角)。不同刀具之间的关键尺寸至少存在0.05mm以上的误差(特别是镶齿刀具),这使得加工出来的工件表面存在残留、台阶和损伤,不得不依靠后续的人工修整和抛光进行处理。
从切削参数方面看,由于各生产现场的技术水平和配套环境不同,刀具切削时使用的切削参数差异较大,切削参数的选择和使用主要以工艺人员或机床操作者的经验为主。铝合金材料的切削速度在200~2000m/min之间,单位时间材料的去除率为10~30kg/h不等;钛合金材料切削速度在9~50m/min之间,单位时间材料的去除率一般不超过1~2kg/h。从刀具寿命方面看,生产现场基本上都没有严格控制,主要是由操作者凭经验判定刀具的可用状态,这也是造成工件加工表面质量不稳定的原因之一。
随着飞机产品飞行性能的提高,人们对现代航空零件加工精度的要求也逐步严格,复杂形状表面的精度误差从早期的±(0.15~0.3)mm已经提高到±(0.08~0.12)mm,表面粗糙度从Ra6.4~Ra1.6提高到Ra1.6~Ra0.8。提高刀具精度、合理选择使用刀具是满足零件的精度和表面质量要求的重要环节。
新材料、新结构的切削加工特点及刀具需求
从新型飞机和发动机的发展趋势看,基于降低飞机机体和发动机重量、提高飞行性能、节省燃油消耗的考虑,过去大量采用的组合式金属结构、铝合金直接覆盖的方法已逐渐被舍弃,钛合金、复合材料使用的比例越来越大,整体结构成为飞机和发动机产品的主体。钛合金是公认的难加工材料之一,需要在高性能刀具的支持下才能满足质量和周期需求;采用铺叠、缠绕、RTM等工艺制备的复合材料构件尽管不需要很大的切削加工量,但其材料结构的特殊性和较高的质量要求也对切削刀具具有较高的要求;采用整体结构设计后,一般情况下都选用整体板材或大型锻造毛坯来加工,其中90%以上的材料都要被切除,加工量较大,对加工效率要求极高。
航空发动机零件通常为钛合金、高温合金材料,这些材料的切削加工一直是一个难点。同时,航空发动机零件形状复杂、精度要求严格。以新型发动机的主要结构部件——整体叶盘为例,切削加工过程涉及气流通道、叶身型面、叶根叶尖、进排气边等难加工部位,铣削是完成这些关键部位加工的主要工艺方法,由于结构空间狭窄,通常要使用小直径、大长度的立铣刀或球头铣刀。航空发动机零件切削加工的主要特点是:
(1)被加工材料变形屈服极限高,切削变形抗力大,导致切削力大、切削功率高,刀具承受较大的切削力和扭矩,要求刀具具有较高强度硬度和耐磨性能,加工过程中能很好地维持刀具切削性能和几何形状;
(2)切削过程中切削力波动大,刀具承受周期载荷作用,容易产生刃部缺口或崩刃,要求刀具具有较好的韧性并有减振或消振措施;
(3)切削区温度高,切削热集中于刀尖附近(尤其是钛合金工件加工),刀具承受较高的热载荷作用,容易产生熔结和氧化导致刀具失效,要求刀具刃部具有更高的稳定切削性能。
飞机结构件材料通常以铝合金、钛合金、蜂窝结构(铝或NOMEX)和复合材料为主,还有少量的不锈钢和超高强度钢。其中铝合金、钛合金零件切削加工量很大(约有80%~90%材料被切除),复合材料构件切削加工量相对较少,但加工中容易产生撕裂和层间剥离而损伤复合材料构件的基体。飞机结构件通常为薄壁结构,铝合金结构件结构厚度最小可达0.8~2mm;钛合金由于材料特性的限制,其最小结构厚度要大于铝合金结构件的最小结构厚度。飞机结构件以铣削加工为主,其切削加工主要具有以下特点:
(1)铝合金和蜂窝结构的材料屈服强度较低,切削过程产生的切削力小,适合采用高速加工方法,要求刀具满足高速切削的基本要求(如耐热性、抗热冲击性、高温力学性能、可靠性);
(2)复合材料为基体相和增强相组成的物质,力学性能具有各向异性,刀具拉伸、剪切和扭曲的联合作用下切除材料,纤维断面与刀具后刀面存在强烈的摩擦,加工精度和表面粗糙度不易达到设计要求;
(3)零件上存在较多的转角和过渡区域,这些部位应光滑连接以避免应力集中,要求刀具的细部结构(如刀尖圆角)尺寸准确并在切削过程中维持形状不变;
(4)材料切除量大,工步工序加工时间长,要求刀具具有较高的寿命,避免频繁换刀而造成精度损失和辅助时间增加;
(5)零件上具有较多的槽腔、下陷、闭斜角等结构,在铣削加工过程中有时候要使刀具沿轴向切入甚至垂直进刀,这就要求刀具底部具有切削能力。
航空零件的切削加工目前主要分为2个类型:一是轻质结构和轻合金的高速加工,主要针对铝合金和复合材料,使用的刀具以硬质合金、PCD材料为主,带有单涂层或复合涂层;二是针对钛合金、不锈钢、超高强度钢等难加工材料的切削,使用的刀具材料主要是细晶粒硬质合金、超细晶粒硬质合金和高性能高速钢,应特别注意刀具材料(包括其涂层)与工件材料的匹配,实践证明,钛合金切削加工中,常规涂层对提高刀具性能方面没有明显作用,必须寻找新的涂层及涂层工艺。表3给出了现阶段航空产品零件切削加工中不同工件材料适用的刀具和涂层。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈