由于操作过于频繁,请点击下方按钮进行验证!

控制两孔同轴的孔加工技术

 
 

图1 零件图

图2 浮动镗刀加工法

1.研磨头 2.万向节 3.滑轴 4.联接杆 5.偏心轮 6.轴、轴套
图3 脉冲研磨法

图4 轴套螺栓调节法

图5 轴套图

图6 轴套填胶法
在生产中遇到一个关键零件如图1所示,该零件圆度、尺寸精度及粗糙度要求较高,特别是两孔同轴度要求≤f0.01,更增加加工难度。而我单位设备比较简陋,无高精度孔加工设备,只能在C630车床上想办法,在这过程中走了相当长的弯路,最终找到一种简易、切实可行的方法,满足了零件设计要求。

1 浮动镗刀加工

  1. 将零件固定在拖板上,主轴夹紧刀杆先粗镗f48内孔,因为两孔跨距较大且孔径较小,宜采用调头18Mmdeg;镗削,加工工艺方法如下:①先加工基准面M与两孔的中心连线平行,在镗削前找正工艺基准M与大拖板平行,平行度≤0.01mm/m,镗削D1孔;②D1孔镗削完毕后调头,同样找正工艺基准M,平行度mlt;0.01mm/m,然后移动中拖板找正D1内孔,跳动不大于0.005,镗削D2孔,以上两孔均留加工余量ap=0.03~0.06mm。
  2. 浮动镗刀精镗(图2所示),由于它能自动补偿由刀具安装误差、机床主轴偏差而造成的加工误差,因此能达到尺寸精度及粗糙度要求,但它无法纠正孔的直线度误差及位置误差。由于零件孔较长、零件材料为灰铸铁,材质不均,并且两孔中间断开,检测两孔的同轴度公差很不稳定,零件的合格率一直很低,同轴度一般在f0.02~f0.10之间,不能满足图纸要求。

2 脉冲研磨

按图3所示自制一套研磨工具,仍然在C630车床上加工,主轴夹紧工件旋转,研磨工具固定在拖板上,电机通过偏心轮5带动研磨滑轴3作脉冲运动,该方法较好地保证了孔的尺寸精度及粗糙度,但因两孔中间断开,研磨头无法连续工作,仍然无法纠正镗孔时产生的两孔同轴度的偏差,我们曾考虑将两断孔整体铸造,一体研磨,加工后将中间多余部分去掉,但这很容易产生新的应力变形,使同轴度发生变化。

3 轴套调节法

  1. 零件左孔仍然按上述研磨法加工,以达到较高的尺寸精度及粗糙度要求,零件右孔按图4所示镶一壁厚为5mm 轴套(见图5,因零件尺寸所限无法增加轴套壁厚),该轴套经过磨削,尺寸精度、形状精度及粗糙度满足要求,轴套与零件之间留0.1~0.5mm间隙,轴套上下前后采用8只螺栓调节,通过螺栓调整两孔的同轴度,此方法非常烦琐效率低,因为仅8个支点支撑,轴套很容易因螺栓上的作用力产生微变形,产生圆度误差,而且调完之后同轴度易改变。
  2. 在这之后我们采取了一种新的方法,去掉螺栓,将轴套(图5)与零件的间隙增加到0.4~0.5mm,在轴套与零件之间填充509强力胶与铸铁末的混合物,该胶属双组份混合固化胶,不会因挥发而产生间隙,该胶耐水、耐油、耐晒、耐酸碱及具备防腐功能,并能耐低温-60℃,耐高温90~140℃,粘结强度:铜钢材类平粘14~26MPa,铜钢类套管接16~32MPa。将混合物从螺纹孔注射进去,均匀地分布在轴套四周。常温下2~6h固化,此方法的优缺点如下:
    • 适用于同轴度要求高的零件加工;
    • 用于同轴孔系中跨距较大的孔;
    • 适用于中、小批量零件加工;
    • 可以极大地消除机床系统误差;
    • 辅助时间较长,不适用大批量加工。
  3. 同轴度误差分析设计芯轴时,严格控制其轴线直线度误差<0.005,保证芯轴外圆尺寸公差、圆度、粗糙度要求高于零件内孔精度要求,芯轴与D1和D2孔的配合无间隙或间隙很小。该方法消除了零件重复定位误差,减少了机床丝杆间隙、刀具刚度等引起的误差,能够很好地保证左右两孔的同轴度。

4 结束语

此方法的关键在于芯轴与左孔及轴套的配合间隙,以及芯轴本身的精度,相比而言控制这些精度较容易,实践证明这种方法简单、稳定、成品率高。只要严格控制好配合间隙及芯轴的精度,成功率接近100%。该方法较好地解决了在简陋设备条件下保证两孔同轴的加工问题。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到

相关主题