由于操作过于频繁,请点击下方按钮进行验证!

多种检测维度,让电池基础研发走得更远、更深

国际金属加工网 2023年08月16日

微信图片_20230816084132.jpg

不少电池企业都为新品起了性感的名字,如“4680”、“顶流”、”M3P”、“短刀”、“凝聚态”,意在打造让从主机厂到C端用户均耳熟能详的记忆点。

而追根溯源,创造具有差异化的电池,不仅需要基础研发人员对材料的极致探索和大胆想象,还需要能够精准剖析微观机制的工具。

一、优秀的电池,离不开更高效的工具

电池企业都想在“性能”、“安全性”、“成本”等关键因素上表现优异,这就需要超过同行的质量控制手段。首先就要在研发环节,充分了解和控制电池相关材料的特性,选择良好的材料。

材料从根本上决定着电池性能。通过改进材料提高电池性能、优化电池老化机制、应用新型材料、改变电芯结构是电芯研发的主要方向。而且,往往多策并举,促成电池的升级和创新。

材料体系方面,采用高镍正极、硅基负极、锂金属负极等新型材料体系,提高单体能量密度;或者研制出磷酸锰铁锂,探索钠离子电池的商业化应用,降低成本;或者加快固态电池的研发进程,使电池性能更高,更耐久。

电芯形状方面,方形电池,尤其是LFP短刀兼顾性能、集成与制造,成为主流企业的优选方案之一;大圆柱电池也是热门方向,特斯拉和宝马均已提出具体的实施规划。

快充技术方面,多家主机厂联合电池企业推出2C~4C快充方案。这就需要电池企业从电池材料(尤其是负极材料的选择和微观结构的设计)、电极设计等出发,降低内阻、加强散热,提高电池的倍率性能。

微信图片_20230816084139.jpg

▲ 动力电池的技术趋势 来源:《纤毫毕现,追根溯源–探索电池高效生产 打造高品质电池的奥秘》白皮书

正所谓“工欲善其事,必先利其器”,更优秀的动力电池产品离不开更高效有力的检测工具。

材料的微观结构表征是电芯研发的关键,目前多种材料表征方法被推出并得到广泛应用。

在研发环节,工程师利用光学显微镜、X 射线显微镜、3D 检测来观察电极材料,检测电极缺陷并分析电池失效原理。还可观察材料的粒径尺寸、各种成分的配比及分布情况等,加深研发人员的认识和理解。这些都可以在提高研发效率的同时更好的改善电池性能,进而为材料、工艺的改进提供依据。

> 点击获取蔡司新能源汽车白皮书

二、电池材料的二维显微成像和表征

光学显微镜,起源于17世纪,借助可见光的波长放大物体,实现了微米级分辨率,广泛用于生命科学、材料科学等。在电池领域,它能观察电极结构、检测电极缺陷和锂枝晶的生长,为电池研发提供宝贵数据。但受限于可见光的波长,其观测范围有限,而电子显微镜则很好的解决了这个问题。

电子显微镜于1931年问世,使用电子束放大物体,最大可放大高达300万倍,达到纳米级分辨率。由于电子显微镜具备更高的分辨率,在电池研发中,搭配不同的探头,可以得到多维度的信息(成分、表征信息,粒度尺寸,配料占比等),实现对正负极材料、导电剂、粘结剂及隔膜等更微观结构的检测(观察材料的形貌、分布状态、粒径大小、存在的缺陷等)。

微信图片_20230816084143.jpg

▲ 电池正负极材料、导电剂、粘结剂、隔膜SEM图 来源:蔡司(使用蔡司电子显微镜测试)

由于具备高分辨率,扫描电子显微镜(SEM) 能清楚地反映和记录材料的表面形貌特征,因此成为表征材料形貌最为便捷的手段之一。

三、电池检测:从2D到3D

尽管2D平面检测简单且有效,但有时可能会出现偏差。3D成像为研发人员提供了更为直观的检测结果,提高了电池的研发效率和性能。

其中,X射线显微镜技术如蔡司的Xradia Versa系列,可以实现电池内部的高分辨率3D无损成像,分辨电极颗粒与孔隙、隔膜与空气等,可以大大简化流程,节省时间。

微信图片_20230816084146.jpg

▲ 电池内部高分辨率成像(扫描完整样品 - 选择感兴趣区域 - 放大并进行高分辨率成像)来源:蔡司(使用蔡司 Xradia Versa 系列 X 射线显微镜测试)

在此基础上,蔡司推出的4D微观结构演化表征方法,可以获得更多信息,提供更微小的细节特征。

当需要进一步高分辨率分析时,新一代聚焦离子束(FIB)技术成为首选。FIB结合SEM,允许样品在纳米级别进行精细加工和观察。蔡司和赛默飞均已推出相关显微镜产品。

> 点击获取蔡司新能源汽车白皮书

四、电池的原位测试和多技术关联应用

一种检测手段常常无法完全表征材料属性。所以,行业将不同的测试设备协同应用,实现多手段的关联,则可以在测试中得到多维度的信息,使结果更为直观。

早期,多手段关联的出发点,是以不同分辨率来观察被测对象的需求。利用 CT→X 射线显微镜→ FIB-SEM,选定区域并逐级放大,就可以得到更为全面和精确的信息,同时可以实现快速定位,使检测更为高效。

微信图片_20230816084148.jpg

▲ 正极材料的多尺度关联分析 来源:蔡司(使用蔡司 Xradia Versa、Ultra、FIB-SEM 系列产品多尺度关联测试)

为了实现原位多角度分析,如德国 WITec、捷克 Tescan、蔡司等推出了 RISE 系统,实现拉曼成像与 SEM 等技术的联合应用,通过电池表面形貌(SEM)、元素分布(EDS)与电极材料分子组成信息(Raman 图谱)结合。

材料测试通常伴随制样过程,由于 FIB-SEM 需要对同一个样品进行多次制样测试来构建 3D 图像,采用常规制样方法需要消耗很长时间。为解决这个问题,蔡司提出了一组非常巧妙的联合方案。更多精彩内容,请查阅《纤毫毕现,追根溯源 – 探索电池高效生产 打造高品质电池的奥秘》白皮书。

> 点击获取蔡司新能源汽车白皮书

  

  

微信图片_20230210090916.jpg

(蔡司工业质量解决方案)

声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到

相关主题