随着德国工业4.0的提出,智能制造成为制造技术发展的主攻方向。实现智能制造的核心是信息处理和物理过程的深度融合,传统制造过程主要是在实体空间依靠生产设备制造产品,设备和过程本身很少或不产生数据。随着网络信息技术的发展,逐步发展为通过物联网和互联网进行人与人、人与机、机与机的协同和交互模式,进一步建立物理设备和过程的数字模型,不断进行仿真和优化,提高生产效率和效益,这就是所谓的CPS(Cyber Physical Systems)信息物理融合系统。面向智能制造的数控系统必然是以CPS为基础构建,它不再仅仅是机床设备的控制系统,而是成为工厂甚至整个智慧城市的一个智能节点。
智能制造是一个系统,它不仅仅是智能技术的组合,也不仅仅局限在生产制造的业务领域,它是以融合了当前最新技术,贯穿研发、制造、客户服务等的全价值链领域。所以数控系统的智能化就不能仅仅从制造环节本身考虑,提高其工艺柔性、质量和效率,还要从整个系统的角度考虑。基于互联网和计算机技术的“互联网+”恰是技术升级中一个非常重要的突破点。如何发挥中国的互联网和制造融合的优势将会成为制造业转型升级的重要路径。
在中国信息物理系统白皮书中提出的构成CPS的四大核心要素,“一硬”( 感知和自动控制)、“一软”(工业软件)、“一网”(工业网络)、“一平台”(工业云和智能服务平台),通过状态感知、实时分析、科学决策、精准执行四个过程解决生产制造、应用服务过程中的复杂性和不确定性问题,提高资源配置效率,实现资源优化。
从19世纪50年代第一台数控系统出现到现代开放式数控系统,期间经历了多次重大变化,但是这些变化都局限在单机的功能和单元技术的革新和升级方面。设备的联网相关技术进展缓慢。
这些年以来,数控系统互联方式的变化:数控系统的互联方式从最早的串行通信逐步升级为以太网通信。不同类型(品牌)的数控系统的通信端口、通信协议千差万别。
以1996年发布的OPC协议为例,其最初目的是把PLC特定的协议(如Modbus,Profibus总线等)抽象为标准化的接口,通过以太网向HMI/MES等系统提供标准化的连接通信支持,这种面向局域网的通信存在如下缺点:平台局限、防火墙穿透困难、OPC无法支持互联网、安全功能弱、数据完整性无法确保。
在工业4.0及“互联网+”的背景下,数控系统的未来发展与竞争出现了新的变化,在中国更多的竞争将会聚焦在如何利用互联网的优势,让数控系统的计算能力获得无限扩展,并且通过对分享经济等新兴商业模式的理解,合理打造与之相适应的功能成为未来的重要趋势。
从制造技术本身来看,数控系统的智能化在四个方面进行:操作智能化、加工智能化、维护智能化和管理智能化。
在互联网条件下,数控系统必须要成为一个能够产生数据的透明的智能终端,让制造过程及其全生命周期“数据透明”。
机床数控系统的智能化与网络化是大势所趋,基于CPS的理念引导智能数控系统发展,通过网络、平台从整个系统的视角实现数控机床的智能化。
智能化的发展是一个循序渐进的过程,目前对智能化还有不同的理解,也没有普遍适用的解决方案。数控机床商业模式的创新和真正落地运营就一定依赖于数控系统的智能化与网络化。未来的数控系统将会越来越多地将互联网的影响渗透到制造环节,通过数据的累积、传输和挖掘,将会诞生越来越多的智能化制造能力,透明和分享化将会为制造业带来翻天覆地的变革。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
AMTS & AHTE SOUTH CHINA 2024同期会议全公开!
- 暂无反馈