由于操作过于频繁,请点击下方按钮进行验证!

关于加工精度,此文不得不看

加工精度主要用于生产产品程度,加工精度与加工误差都是评价加工表面几何参数的术语。加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。加工精度高,就是加工误差小,反之亦然。公差等级从IT01,IT0,IT1,IT2,IT3至IT18一共有20个,其中IT01表示的话该零件加工精度最高的,IT18表示的话该零件加工精度是最低的 ,一般上IT7、IT8是加工精度中等级别。

任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。

机器的质量取决于零件的加工质量和机器的装配质量,零件加工质量包含零件加工精度和表面质量两大部分。

机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。直观学机械这个微信号你关注了吗。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。

相关内容

尺寸精度

加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度。

形状精度

指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度。

位置精度

指加工后零件有关表面之间的实际位置精度差别。

相互关系

通常在设计机器零件及规定零件加工精度时,应注意将形状误差控制在位置公差内,位置误差又应小于尺寸公差。即精密零件或零件重要表面,其形状精度要求应高于位置精度要求,位置精度要求应高于尺寸精度要求。

调整方法

重点

01、对工艺系统进行调整

试切法调整

通过试切—测量尺寸—调整刀具的吃刀量—走刀切削—再试切,如此反复直至达到所需尺寸。此法生产效率低,主要用于单件小批生产。

调整法

通过预先调整好机床、夹具、工件和刀具的相对位置获得所需尺寸。此法生产率高,主要用于大批大量生产。

重点

02、减小机床误差

1)提高主轴部件的制造精度

应提高轴承的回转精度 :

①选用高精度的滚动轴承;

②采用高精度的多油锲动压轴承;

③采用高精度的静压轴承,

应提高与轴承相配件的精度:

①提高箱体支撑孔、主轴轴颈的加工精度;

②提高与轴承相配合表面的加工精度;

③测量及调节相应件的径向跳动范围,使误差补偿或相抵消。

2)对滚动轴承适当预紧

①可消除间隙;

②增加轴承刚度;

③均化滚动体误差。

3)使主轴回转精度不反映到工件上

重点

03、减少传动链传动误差

1)传动件数少,传动链短,传动精度高;

2)采用降速传动(i<1),是保证传动精度的重要原则,且越接近末端的传动副,其传动比应越小;

3)末端件精度应高于其他传动件。

重点

04、减小刀具磨损

在刀具尺寸磨损达到急剧磨损阶段前就必须重新磨刀

重点

5.减小工艺系统的受力变形

1)提高系统刚度

①合理的结构设计

尽量减少连接面的数目;防止有局部低刚度环节出现;应合理选择基础件、支撑件的结构和截面形状。

②提高连接表面的接触刚度;提高机床部件中零件间结合面的质量;给机床部件以预加载荷;提高工件定位基准面的精度和减小它的表面粗糙度值。

③采用合理的装夹和定位方式

2)减小载荷及其变化

①合理选择刀具几何参数和切削用量,以减小切削力;

②毛胚分组,尽量使调整中毛胚加工余量均匀。

重点

06、、减小工艺系统热变形

①减少热源的发热和隔离热源

采用较小的切削用量;

零件精度要求高时,将粗精加工工序分开;

尽可能将热源从机床分离出去,减少机床热变形;

对主轴轴承、丝杆螺母副、高速运动的导轨副等不能分离的热源,从结构、润滑等方面改善其摩擦特性,减少发热或用隔热材料;

采用强制式风冷、水冷等散热措施。

②均衡温度场

③采用合理的机床部件结构及装配基准

采用热对称结构——在变速箱中,将轴、轴承、传动齿轮等对称布置,可使箱壁温升均匀,箱体变形减小;

合理选择机床零部件的装配基准。

④加速达到传热平衡

⑤控制环境温度

重点

07、减少残余应力

①增加消除内应力的热处理工序;

②合理安排工艺过程。

影响原因

重点

01加工原理误差

加工原理误差是指采用了近似的刀刃轮廓或近似的传动关系进行加工而产生的误差。加工原理误差多出现于螺纹、齿轮、复杂曲面加工中。

例如,加工渐开线齿轮用的齿轮滚刀,为使滚刀制造方便,采用了阿基米德基本蜗杆或法向直廓基本蜗杆代替渐开线基本蜗杆,使齿轮渐开线齿形产生了误差。又如车削模数蜗杆时,由于蜗杆的螺距等于蜗轮的周节(即mπ),其中 m是模数,而π是一个无理数,但是车床的配换齿轮的齿数是有限的,选择配换齿轮时只能将π化为近似的分数值(π =3.1415)计算,这就将引起刀具对于工件成形运动(螺旋运动)的不准确,造成螺距误差。

在加工中,一般采用近似加工,在理论误差可以满足加工精度要求的前提下(《=10%-15%尺寸公差),来提高生产率和经济性。

重点

02调整误差

机床的调整误差是指由于调整不准确而产生的误差。

重点

03机床误差

机床误差是指机床的制造误差、安装误差和磨损。主要包括机床导轨导向误差、机床主轴回转误差、机床传动链的传动误差。

重点

04机床导轨导向误差

1、导轨导向精度——导轨副运动件实际运动方向与理想运动方向的符合程度。

① 导轨在水平面内直线度Δy和垂直面内的直线度Δz(弯曲);

②前后两导轨的平行度(扭曲);

③ 导轨对主轴回转轴线在水平面内和垂直面内的平行度误差或垂直度误差。

2.导轨导向精度对切削加工的影响主要考虑导轨误差引起刀具与工件在误差敏感方向的相对位移(欢迎关注微信:直观学机械)。

车削加工时误差敏感方向为水平方向,垂直方向引起的导向误差产生的加工误差可以忽略;镗削加工时误差敏感方向随刀具回转而变化;刨削加工时误差敏感方向为垂直方向,床身导轨在垂直平面内的直线度引起加工表面直线度和平面度误差。

重点

05机床主轴回转误差

机床主轴回转误差是指实际回转轴线对于理想回转轴线的漂移。主要包括主轴端面圆跳动、主轴径向圆跳动、主轴几何轴线倾角摆动。

1、主轴端面圆跳动对加工精度的影响:①加工圆柱面时无影响;②车、镗端面时将产生端面与圆柱面轴线垂直度误差或端面平面度误差;③加工螺纹时,将产生螺距周期误差。

2、主轴径向圆跳动对加工精度的影响:

①若径向回转误差表现为其实际轴线在y轴坐标方向上作简谐直线运动,镗床镗出的孔为椭圆形孔,圆度误差为径向圆跳动幅值;而车床车出的孔没什么影响;

②若主轴几何轴线作偏心运动,无论车、镗都能得到一个半径为刀尖到平均轴线距离的圆。

3、主轴几何轴线倾角摆动对加工精度的影响:

①几何轴线相对于平均轴线在空间成一定锥角的圆锥轨迹,从各截面看相当于几何轴心绕平均轴心作偏心运动,而从轴向看各处偏心值不同;

②几何轴线在某一平面内作摆动,从各截面看相当于实际轴线在一平面内作简谐直线运动,而从轴向看各处跳动幅值不同;③实际上主轴几何轴线的倾角摆动为上述两种的叠加。

重点

06、机床传动链的传动误差

机床传动链的传动误差是指传动链中首末两端传动元件之间的相对运动误差。

重点

07、夹具的制造误差和磨损

夹具的误差主要指:a)定位元件、刀具导向元件、分度机构、夹具体等的制造误差;b)夹具装配后,以上各种元件工作面间的相对尺寸误差;c)夹具在使用过程中工作表面的磨损。

重点

08、刀具的制造误差和磨损

刀具误差对加工精度的影响根据刀具的种类不同而异。

a)定尺寸刀具(如钻头、铰刀、键槽铣刀及圆拉刀等)的尺寸精度直接影响工件的尺寸精度。

b)成型刀具(如成型车刀、成型铣刀、成型砂轮等)的形状精度将直接影响工件的形状精度。

c)展成刀具(如齿轮滚刀、花键滚刀、插齿刀具等)的刀刃形状误差会影响加工表面的形状精度。

d)一般刀具(如车刀、镗刀、铣刀),其制造精度对加工精度无直接影响,但刀具易磨损。

重点

09、工艺系统受力变形

工艺系统在切削力、夹紧力、重力和惯性力等作用下会产生变形,从而破坏了已调整好的工艺系统各组成部分的相互位置关系,导致加工误差的产生,并影响加工过程的稳定性。主要考虑机床变形、工件变形以及工艺系统的总变形。

重点

10、切削力对加工精度的影响

只考虑机床变形,对加工轴类零件来讲,机床受力变形使加工工件呈两端粗、中间细的鞍形,即产生圆柱度误差。只考虑工件变形,对加工轴类零件来讲,工件受力变形使加工后工件呈两端细、中间粗的鼓形。而对加工孔类零件来讲,单独考虑机床或工件的变形,加工后工件的形状与加工的轴类零件相反。

重点

11、夹紧力对加工精度的影响

工件装夹时,由于工件刚度较低或夹紧力着力点不当,使工件产生相应的变形,造成的加工误差。

重点

12、工艺系统的热变形

在加工过程中,由于内部热源(切削热、摩擦热)或外部热源(环境温度、热辐射)产热使工艺系统受热而发生变形,从而影响加工精度。在大型工件加工和精密加工中, 工艺系统热变形引起的加工误差占加工总误差的40%-70%。

工件热变形对加工金的的影响包括工件均匀受热和工件不均匀受热两种

重点

13、工件内部的残余应力

残余应力的产生:1)毛胚制造和热处理过程中产生的残余应力;2)冷校直带来的残余应力;3)切削加工带来的残余应力。

重点

14、加工现场环境影响

加工现场往往有许多细小金属屑,这些金属屑如果存在与零件定位面或定位孔位置就会影响零件加工精度,对于高精度加工,一些细小到目视不到的金属屑都会影响到精度。这个影响因素会被识别出来但并无十分到位的方法来杜绝,往往对操作员的作业手法依赖很高。

测量方法

加工精度根据不同的加工精度内容以及精度要求,采用不同的测量方法。一般来说有以下几类方法:

重点

01按是否直接测量被测参数,可分为直接测量和间接测量

直接测量:直接测量被测参数来获得被测尺寸。例如用卡尺、比较仪测量。

间接测量:测量与被测尺寸有关的几何参数,经过计算获得被测尺寸。

显然,直接测量比较直观,间接测量比较繁琐。一般当被测尺寸或用直接测量达不到精度要求时,就不得不采用间接测量。

重点

02按量具量仪的读数值是否直接表示被测尺寸的数值,可分为绝对测量和相对测量

绝对测量:读数值直接表示被测尺寸的大小、如用游标卡尺测量。

相对测量:读数值只表示被测尺寸相对于标准量的偏差。如用比较仪测量轴的直径,需先用量块调整好仪器的零位,然后进行测量,测得值是被侧轴的直径相对于量块尺寸的差值,这就是相对测量。

一般说来相对测量的精度比较高些,但测量比较麻烦。

重点

03按被测表面与量具量仪的测量头是否接触,分为接触测量和非接触测量

接触测量:测量头与被接触表面接触,并有机械作用的测量力存在。如用千分尺测量零件。

非接触测量:测量头不与被测零件表面相接触,非接触测量可避免测量力对测量结果的影响。如利用投影法、光波干涉法测量等。

重点

04按一次测量参数的多少,分为单项测量和综合测量

单项测量;对被测零件的每个参数分别单独测量。

综合测量:测量反映零件有关参数的综合指标。如用工具显微镜测量螺纹时,可分别测量出螺纹实际中径、牙型半角误差和螺距累积误差等。

综合测量一般效率比较高,对保证零件的互换性更为可靠,常用于完工零件的检验。单项测量能分别确定每一参数的误差,一般用于工艺分析、工序检验及被指定参数的测量。

重点

05按测量在加工过程中所起的作用,分为主动测量和被动测量

主动测量:工件在加工过程中进行测量,其结果直接用来控制零件的加工过程,从而及时防治废品的产生。

被动测量:工件加工后进行的测量。此种测量只能判别加工件是否合格,仅限于发现并剔除废品。

重点

06按被测零件在测量过程中所处的状态,分为静态测量和动态测量

静态测量;测量相对静止。如千分尺测量直径。

动态测量;测量时被测表面与测量头模拟工作状态中作相对运动。

动态测量方法能反映出零件接近使用状态下的情况,是测量技术的发展方向。

我们天天与加工打交道,也常常提及精度,但是你说的精度说对了吗?或者说严谨吗?让我们跟“前沿数控技术”来看看精度那些事儿吧!

准确度(Accuracy)

指得到的测定结果与真实值之间的接近程度。测量的准确度高,是指系统误差较小,这时测量数据的平均值偏离真值较少,但数据分散的情况,即偶然误差的大小不明确。

精密度(Precision)

指使用同种备用样品进行重复测定所得到的结果之间的重现性、一致性。有可能精密度高,但精确度是不准确的。例如,使用1mm的长度进行测定得到的三个结果分别为1.051mm、1.053、1.052,虽然它们的精密度高,但却是不准确的。

准确度表示测量结果的正确性,精密度表示测量结果的重复性和重现性,精密度是准确度的前提条件。

一份数控机床的促销文章上,机床A的“定位精度”标为0.004mm,而在另一生产商的样本上,同类机床B的“定位精度”标为0.006mm。从这些数据,你会很自然地认为机床A比机床B的精度要高。

然而,事实上很有可能机床B比机床A的精度要高,问题就在于机床A和B的精度分别是如何定义的。所以,当我们谈到数控机床的“精度”时,务必要弄清标准、指标的定义及计算方法。

精度的定义

日本机床生产商:标定“精度”时,通常采用JISB6201或JISB6336或JISB6338标准。JISB6201一般用于通用机床和普通数控机床,JISB6336一般用于加工中心,JISB6338则一般用于立式加工中心

欧洲机床生产商:特别是德国厂家,一般采用VDI/DGQ3441标准。

美国机床生产商:通常采用NMTBA(National Machine Tool Builder's Assn)标准(该标准源于美国机床制造协会的一项研究,颁布于1968年,后经修改)。

当标定一台数控机床的精度时,非常有必要将其采用的标准一同标注出来。采用JIS标准,其数据比用美国的NMTBA标准或德国VDI标准明显偏小。

同样的指标,不同的含义

经常容易混淆的是:同样的指标名在不同的精度标准中代表不同的意义,不同的指标名却具有相同的含义。上述4种标准,除JIS标准之外,皆是在机床数控轴上对多目标点进行多回合测量之后,通过数学统计计算出来的,其关键不同点在于:

目标点的数量

测量回合数

从单向还是双向接近目标点(此点尤为重要)

精度指标及其它指标的计算方法

这是4种标准的关键区别点描述,正如人们所期待的,总有一天,所有机床生产商都统一遵循ISO标准。因此,这里选择ISO标准作为基准。下表中对4种标准进行了比较,本文仅涉及线性精度,因为旋转精度的计算原理与之基本一致。

热稳定(温度对精度的影响)

钢件:100 x 30 x 20 mm

温度从25℃下降到 20℃尺寸的变化:在25℃时,尺寸偏大6μm,当温度降至20℃时,尺寸仅偏大0.12μm,这是一个热稳定的过程,即使温度迅速下降,仍然需要一个持续的时间才能维持精度。越大的物体,在温度变化时需要更多的时间来恢复精度稳定。

高精度加工需维持温度的推荐值如下表,如果是进行高精度加工,可不能对温度变化掉以轻心哦,这是非常重要的!


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
北京市 中国电信北京研究院 - MMS网友:#42018-03-19 10:34:36进行高精度加工,可不能对温度变化掉以轻心回复顶()踩()
北京市 中国电信北京研究院 - MMS网友:#32018-03-19 10:34:52进行高精度加工,可不能对温度变化掉以轻心回复顶()踩()
北京市 中国电信北京研究院 - MMS网友:#22018-03-19 10:41:28温度影响确实很大回复顶()踩()
北京市 中国电信北京研究院 - MMS网友:#12018-03-19 10:43:57空气质量影响也很大回复顶()踩()
相关链接
  • Leitz Reference加持,SUMCA公司开启高精度模具检测新时代
  • 25-01-03
  • 海克斯康工业质量校园行2024圆满收官,2025蓄势待发!
  • 25-01-03
  • 2025 PolyWorks 1月&2月教室型培训报名启动!
  • 25-01-03
  • 铸就AI服务器质量动脉 – 高速背板连接器新趋势(三)
  • 25-01-03
  • 电芯无损三维检测:蔡司工业 CT 技术助力新能源汽车电池质量提升
  • 25-01-03
  • 「ZEISS INSPECT 2025」重磅上线,焕新升级!
  • 25-01-03
  • 友嘉国际2025新年寄语:2025 友嘉领航
  • 25-01-03
  • 牧野中国新年致辞 | 前程浩荡 未来可期
  • 25-01-02
  • 2024年1-11月机床工具行业经济运行简讯
  • 25-01-02
  • 汇聚智慧力量,启航2025
  • 25-01-02
  • BIG2025新年致辞:继续以“高品质合众国”的理念服务中国制造业
  • 25-01-02
  • 山特维克可乐满北亚区总经理2025新年寄语:砥砺前行志,阔步新征程!
  • 25-01-02
  • 埃马克VLC 350 GT:车磨组合加工,效率提升利器
  • 25-01-02
  • DMG MORI新年寄语 | 变局中保持韧性 挑战中寻找机遇
  • 25-01-02
  • 欧士机2025新年寄语:辞旧岁砥砺前行,启新程匠心筑梦
  • 24-12-31
  • 2025新年特刊:打造新质生产力,智启未来新篇章
  • 24-12-31
  • 笃定于人心所向, 顺势而终有所为——金万众孙小明董事长2025新年寄语
  • 24-12-31
  • 航空航天 | 助力“银杏叶”一飞冲天~瓦尔特Xtra·tec® XT玉米铣刀M5250
  • 24-12-31
  • 元启新程—与“尼”回顾2024
  • 24-12-31
  • 定格2024,海克斯康的中国故事
  • 24-12-31
  • 分享到

    相关主题