数控装备的高速度、高精度、高柔性和高自动化程度,向数控系统" target=_blank>数控系统和伺服驱动系统提出了相应的要求,下面主要从数控系统与伺服驱动系统方面介绍其关键技术。
1.高速化技术要实现数控设备高速化,首先要求数控系统能对由微小程序段构成的加工程序进行高速处理,以计算出伺服电机的移动量,同时要求伺服电机能高速度地作出反应。采用32位微处理器,是提高数控系统高速处理能力的有效手段。在数控设备高速化中,提高主轴转速占有重要地位。主轴高速化的手段是直接把电机与主轴连接成一体,从而可将主轴转速大大提高。采用直线电机技术来替代目前机床传动中常用的滚珠丝杠技术,在提高轮廓加工速率的同时,提高了加速度。除不断采用新型功能部件外,还需在以下几个方面进行深入研究:
1)高速加工动力学建模及控制高速运动下的对象已经不能用纯静态的方法处理,数控问题也不再能归结为几何问题或静力学问题。作为一个动态对象,它并不是“亦步亦趋”地跟随所施加的控制,而力图表现出它的“个性”;另一方面,所施加的控制必须充分顾及被控制对象的动态特性,才能得到预期的控制效果。因此,已经不能像传统的数控系统那样,可以将控制系统与被控制对象分开来研究和制造,而必须作为一个整体来处理,研究其在高速状态下的动力学问题,以及超高速运动控制条件下光、电信号的时滞影响及其消除的问题。在高速情况下,必须研究集数控系统与控制对象为一体的整体动力学建模、基于整体动力学模型的非线性控制策略、智能化控制方法等。
2)机电特性参数的辨识、分析与控制优化高速控制的核心在于实现高加速度,为此需要使伺服机构处于最佳工作状态,从而获得系统最大运动加速度。因此,基于系统整体建模的加速度控制曲线选择、伺服机电参数的辨识优化、多轴增益的协调控制等是当前研究的热点。
3)高速、高精插补运算和控制算法高速、高精插补是将复杂轨迹按控制规律分解成伺服控制指令。轮廓加工时,加工程序由巨量微小线段构成,高速加工除需保证微段程序连续执行外,还需根据轨迹变化及时预测各轴状态,实现高加速度运行要求。这就要求对微段程序的高速、高精插补、高速预处理,微段程序的加减速控制,超前G代码预测(Lookahead),复杂轨迹的直接插补以及高速数据传输等进行深入的研究。
4)面向高速高精加工的数控编程原理及方法
传统的数控编程解决了中低速加工中的刀位轨迹生成问题,但是高速加工却对数控编程从原理与方法上提出了更高的要求。为此.必须在研究高速加工工艺机理的基础上,研究适用于高速高精加工的数控编程原理及方法。在这方面,高速加工工艺机理、高速加工工艺参数知识库、基于高速加工非线性运动误差补偿的刀位轨迹规划、加工程序平滑过渡、高速加工中进给速度优化、基于STEP标准、面向加工特征的高级NC代码语言等都是需要研究的内容。
2.高精度化技术提高数控机床" target=_blank>数控机床的加工精度,一般可通过减少数控系统的误差和采用机床误差补偿技术来实现。在减少CNC系统控制误差方面,通常采取提高数控系统的分辨率,提高位置检测精度的方法。然而在高速、高精加工的情况下,在线动态测量和补偿存在着高精度与大量程几何量之间的矛盾,是传统检测方法难以完成的。因此,需要研究新的测量和补偿机理,即进行高精度、大量程几何量的在线动态检测原理研究,以及控制误差的在线和实时检测、预报和补偿方法等研究,在位置伺服系统中采用前馈控制与非线性控制等方法。为解决在高速、高精加工中的小步长与大行程之间的矛盾,需要研究新的高速驱动原理及机构。在机床误差补偿技术方面,除采用齿隙补偿、丝杠螺距误差补偿和刀具补偿等技术外,近年来对设备热变形误差补偿和空间误差综合补偿技术的研究已成为世界范围的研究课题。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈