由于操作过于频繁,请点击下方按钮进行验证!

齿轮量仪的现状与发展 (一)

  齿轮量仪是一个内含较为丰富的概念,它不仅包括检测各种齿轮的仪器,也将检测蜗轮、蜗杆、齿轮刀具、传动链的仪器涵盖其中。齿轮种类繁多,几何形状复杂,表征其误差的参数众多。所以,齿轮量仪的品种也很多。   

  齿轮测量技术及其仪器的研究已有近百年的历史,在这不短的发展历程中,有6件标志性事件:    

   (1)1923年,德国Zeiss公司在世界上首次研究成功一种称为“Toooth Surface Tester”的仪器,实际上是机械展成式万能渐开线检查仪。在此基础上经过改进,Zeiss于1925年推出了实用性仪器,并投放市场。该仪器的长度基准采用了光学玻璃线纹尺,其线距为1微米。该仪器的问世,标志着齿轮精密测量的开始,在我国得到广泛使用的VG450就是该仪器的改进型产品。    

   (2)50年代初,机械展成式万能螺旋线标准仪的出现标志着全面控制齿轮质量成为现实。    

   (3)1965年,英国的R·Munro博士研制成功光栅式单啮仪,标志着高精度测量齿轮动态性能成为可能。   

  (4)1970年,以黄潼年为主的中国工程技术人员研制开发的齿轮整体误差测量技术,标志着运动几何法测量齿轮的开始。    

   (5)1970年,美国Fellow公司在芝加哥博览会展出Microlog50,标志着数控齿轮测量中心开始投入使用。    

   (6)80年代末,日本大阪精机推出了基于光学全息原理的非接触齿面分析机PS-35,标志着齿轮非接触测量法的开始。   

  从整体上考察过去一个世纪齿轮测量技术的发展,主要表现在以下几个方面:   

  (1)在测量原理方面,实现了由“比较测量”到“啮合运动测量”,直至“模型化测量”的发展;   

  (2)在实现测量原理的技术手段上,历经了“以机械为主”到“机电结合”,直至当今的“光—机—电”与信息技术综合集成的演变;     

  (3)在测量结果的表述与利用方面,历经了“指示表加目视读取”到“记录仪器记录加人工研判”,直至“计算机自动分析并将测量结果反馈到制造系统”的飞跃。与此同时,齿轮量仪经历了从单品种单参数的仪器(典型仪器有单盘渐开线检查仪)、单品种多参数的仪器(典型仪器有齿形齿向检查仪)到多品种多参数仪器(典型仪器有齿轮测量中心)的演变。   

  70年代以前的近50年内,世界上已开发出测量齿廓、螺旋线、齿距等基本参数的各种类型、各种规格的机械展成式仪器。这些仪器借助一些精密机构形成指定标准运动,然后与被测量进行比较,从而获得被测误差的大小。世界上曾开发出多种机械式渐开线展成机构,如单盘式、基圆杠杆式、靠模式等。其中以圆盘杠杆式应用最广,属于这一类的仪器有:Zeiss VG450、Carl Mahr 890和891S、MAAG SP60和HP100、大阪精机GC-4H和GC-6H以及哈尔滨量具刃具厂的3201等。对齿廓误差测量而言,机械展成式测量技术仅限于渐开线齿廓误差测量。对非渐开线齿轮的端面齿厚测量,采用展成法测量是很困难的,因为展成机构太复杂并缺乏通用性。对精确的螺旋展成机构而言,主要采用正弦尺原理,只是如何将正弦尺的直线运动精确地转换为被测工件的回转运动的方式各不相同,这种机构在滚刀螺旋线测量上应用最为典型,如德国Fette公司生产的UWM型滚动测量仪、Zeiss厂生产的万能滚动测量仪、前苏联BHИИ设计的万能型滚动测量仪、意大利Samputensili厂的SU-130型滚刀测量仪、美国Michigan公司生产的万能滚刀测量仪以及Klingelberg公司的PWF250/300等。70年代以前,机械展成式测量技术已经发展成熟,并在生产实践中经受了考验。尽管这样,也存在一些不足之处:其测量精度仍依赖于展成机构的精度,机械结构复杂,柔性较差,且测量一个齿轮需多台仪器。迄今,基于这些技术的仪器仍是我国一些工厂检验齿轮的常用手段。   

  1970年是齿轮测量技术的转折点。齿轮整体误差测量技术和齿轮测量机(中心)的出现解决了齿轮测量领域的一个难题,即在一台仪器上快速获取齿轮的全部误差信息。这两项技术虽然都基于现代光、机、电、计算机等技术,但走上了不同的技术路线。齿轮整体误差测量技术是从综合测量中提取单项误差和其它有用信息。经过30年的完善与推广,齿轮整体误差测量方法在我国已发展成为传统元件的运动几何测量法,其基本思想是将被测对象作为一个刚性的功能元件或传动元件与另一标准元件作啮合运动,通过测量啮合运动误差来反求被测量的误差。运动几何测量法的鲜明特点是形象地反映了齿轮啮合传动过程并精确地揭示了齿轮单项误差的变化规律以及误差间的关系,特别适合齿轮工艺误差分析和动态性能预报。采用这种方法的仪器的优点是测量效率高,适用于大批量生产中的零件检测。典型仪器是成都工具研究所生产的CZ450齿轮整体误差测量仪、CSZ500锥齿轮测量机和CQB700摆线齿轮测量仪。而齿轮测量中心采用坐标测量原理,实际上是圆柱(极)坐标测量机,“坐标测量”实质是“模型化测量”。对齿轮而言,模型化的坐标测量原理是将被测零件作为一个纯几何体(相对“运动几何法”而言),通过测量实际零件的坐标值(直角坐标、柱坐标、极坐标等),并与理想形体的数学模型作比较,从而确定被测量的误差。坐标测量法的特点是通用性强,主机结构简单,测量精度很高。坐标法测量齿轮的思想早已有之,如用万能工具显微镜与分度头的组合也可用来测量齿轮。但是,这种静态测量方式不仅效率低,且测量精度得不到保证。现代光电技术、微电子技术、计算机技术、软件工程、精密机械等技术的发展才真正为坐标测量法显示其优越性提供了坚实的技术基础。迄今已有美国、德国、日本、瑞士、中国、意大利等几个国家生产CNC齿轮测量中心,国外的典型产品是M&M公司的3000系列、Klingelberg的P系列;国产的典型产品是成都工具研究所的CGW300卧式测量中心和哈尔滨量具刃具厂的3903型齿轮测量中心。 


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • CREAFORM 形创科普台 | 计量级三维扫描仪消除质量控制过程中的误差
  • 24-09-26
  • 工业机器人快速标定解决方案
  • 24-09-26
  • 雷尼绍展台现场直击|2024工博会火热进行中
  • 24-09-25
  • 案例 | 如何通过PolyWorks|Inspector推动工业4.0下的自动化变革?
  • 24-09-23
  • 雷尼绍RCS机器人校准产品亮相上海国际工业博览会2024
  • 24-09-20
  • 海克斯康Sigma Report精益报告系统全解析,文末有福利~
  • 24-09-20
  • 尺寸公差与几何公差的关系
  • 24-09-20
  • 海克斯康获批省级科技成果转化中试示范基地
  • 24-09-20
  • 智轨新视界 | 揭秘火车车轮非接触快速检测黑科技
  • 24-09-20
  • 共探数字医疗新业态,海克斯康亮相骨科及齿科植入器械制造技术论坛
  • 24-09-20
  • 工业机器人解决方案:精度检测与校准
  • 24-09-20
  • 助力“双师型”教师队伍建设,海克斯康2024年暑期师资培训圆满收官
  • 24-09-18
  • 关于征集“海克斯康杯”工业产品质量智能检测技术专家及裁判的通知
  • 24-09-18
  • 海克斯康入选山东省2024年中小企业数字化转型服务机构
  • 24-09-18
  • 精密光电的未来有多美?海克斯康在CIOE给出答案
  • 24-09-18
  • 柔性制造,效率新标 | PRESTO M测量系统解锁自动检测“新绝技”
  • 24-09-18
  • 原创 | 高度尺测“平面度”和三坐标测“平面度”差异讨论
  • 24-09-13
  • 线下培训班 | PC-DMIS GD&T 高级应用培训,9月19-20日深圳开班
  • 24-09-13
  • PC-DMIS教师节专场直播的这些亮点,你有没有错过?
  • 24-09-13
  • 『电池篇』温泽为电动汽车电池质量铸就坚固防线
  • 24-09-13
  • 分享到

    相关主题