工件在夹持过程中会产生何种程度的变形?那一种夹持方案可以确保工件维持原有尺寸?现有的夹持器械如何可以得到最佳的运用?对于此类问题,虚拟加工将可给出有价值的答案。
很多人都曾经历过超大部件和超大尺度系统的加工,那时的设计人员大多重视安全系数,但今天,安全系数并不再作为设计是否优良的唯一评判标准。为了保持全球竞争力,研发和设计人员所面临的要求更多——他们必须缩短设计和生产时间,降低重量和节约能源,同时提高部件和整个系统的精度、耐用性和使用寿命,降低将来的维护费用等。模拟可以提供有价值的结果:在研发阶段,即在制造第一台试验样机之前,可以在计算机上进行模拟,看部件在加工状态下的表现如何。
对大尺寸薄壁或特别复杂工件的精确加工往往是一项具有挑战性的任务。一方面夹持力不得超过一定的限度,以免工件发生变形或损坏,另一方面夹持必须要安全可靠,以便抵抗住切削力的作用。采用有限元方法(FEM),可以看出工件在夹持和加工过程中的具体表现。
模拟工件的加工状态
在模拟的基础上,可以设计出夹具、卡钳、夹持高度、夹持力和转速之间的最佳搭配。它可以在工件的破断机理、刚性、寿命和振动特性等方面向人们提供认知。尤其是针对复杂外形的工件和很高精度的要求(如轴承、齿轮、涡轮机外壳、油缸端头和制动环等),早期模拟具有很大的好处。在模拟工件在夹具上和在加工过程中的表现状态时,只需少量数据:
工件的3D模型,例如CAD数据;
有关材质的说明;
切削参数和最大加工转速;
带有夹持点位的夹持示意图;
夹持力和夹钳力的设定值;
夹钳几何外形,例如光滑夹钳和瓷砖等;
机器设备数据,有关夹持油缸和心轴分布的特别说明。
根据这些数据,首先要在CAD程序里建立起相应于夹持任务的3D模型。然后在FEM程序中对材料和夹持接触面做出定义,同时设定包含起始和终止节点在内的各个节点网络。在后续的加载步骤中定义出各项边缘条件,例如在第一步加载过程中,模拟工件在特定夹持力作用到特定点位上时的表现状态。在第二加载步骤中,探究当工件处于旋转卡盘上作高速旋转时载荷的变化。第三个加载步骤则模拟工件在加工过程中的表现状态。
超过所述延伸极限的塑性变形非常重要,因为它在加工结束之后无法恢复。此外,可以根据模拟结果来评判采用某种夹持方案是否可以达到特定的圆度。
模拟不同的夹持效果
采用FEM可以对不同夹持和加工参数,甚至对在工件上力的不同导入点位均可进行模拟。诸如零位夹持螺栓可以直接拧到工件上的夹持方案也可以被模拟。在这里,FEM可以对螺栓的稳定性和工件的变形性做出表述。
通过一则例子可以表明,借助于FEM都可以做到什么:Allweiler公司是欧洲市场上造船、能源生产和特种工业领域泵的市场和技术主导厂家。通过模拟,该企业可以对GG25铸铁材质的驱动笼子的夹持状况进行研究:所要检验的是迄今为止均采用三道工序加工的泵的驱动部件是否也可以只采用两道加工。对此,在一个标准的六钳摆动平衡卡盘上进行径向夹持试验。
第一次模拟结果显示,218f7配合直径上的圆度误差(公差范围为0.048mm)在夹持、高速车削和加工之后达到了0.054mm,即超出了公差范围。在第二次模拟试验中提高了转速并对切削数据进行了匹配,这次试验则成功了。仅仅通过变动加工参数,即可在现有的标准夹具上实现对驱动灯具的加工,这确是一个极大的成本节约。如果没有进行这样详细的FEM分析,则是很难达到这个目标的。
由于FEM总还只是一种理论上的计算,可以建议在模拟的基础上进行一次实际的试验。在大多数情况下,实际结果往往不会偏离所计算的结果。但如果是淬火工件或带有砂皮的铸件,则在材料上的自夹持有时会导致较大的差异。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈