随着飞机性能要求的进一步提高,现代航空工业中大量使用整体薄壁结构零件。其主要结构由侧壁和腹板组成,结构简洁、尺寸较大、加工余量大、相对刚度较低,故加工工艺性差。在切削力、切削热、切削振颤等因素影响下,易发生加工变形,不易控制加工精度和提高加工效率。加工变形和加工效率问题成为薄壁结构加工的重要约束。为此,国内外学者针对铣刀的特殊结构与机床特性,通过大量的理论分析和实验研究建立若干种动、静态铣削模型,利用有限元技术模拟分析刀具和工件的加工变形,并由此提出了一些有效的铣削方法,使薄壁件的加工技术有了一定的突破。本文概述了国内外关于薄壁结构的高效铣削加工技术,并进行了分析讨论。
1薄壁结构的侧壁加工
1)充分利用零件整体刚性的刀具路径优化方案
应用高速切削技术加工薄壁零件的关键在于切削过程的稳定性。大量的实验工作证明,随着零件壁厚的降低,零件的刚性减低,加工变形增大,容易发生切削振颤,影响零件的加工质量和加工效率。J.Tlusty等人提出了充分利用零件整体刚性的刀具路径优化方案。其思想在于在切削过程中,尽可能的应用零件的未加工部分作为正在铣削部分的支撑,使切削过程处在刚性较佳的状态。
如图1所示,对于侧壁的铣削加工,在切削用量允许范围内,采用大径向切深、小轴向切深分层铣削加工,充分利用零件整体刚性(见图1(a))。为防止刀具对侧壁的干涉,可以选用或设计特殊形状铣刀,以降低刀具对工件的变形影响和干扰(见图1(b))。
图1薄壁(侧壁)加工示意图
对于较深的型腔和侧壁的高效铣削加工,J.Tlusty等人在研究动态铣削的基础上,提出合理的大长径比刀具可以有效的解决该类问题。在较高的机床主轴转速和功率状态下,通过调整刀具的悬伸长度来调整机床—刀具—工件工艺系统的自然频率,利用凸角稳定效应(stabilityoflobeeffects),避开可能的切削振动,可用较大的轴向切深铣削深腔和侧壁。实验结果表明,该方法有较大的金属去除率和较高的表面完整性。
2)平行双主轴加工方案
平行双主轴加工方案由日本岩部洋育等人提出。由于铣削力的作用,工件的侧壁会产生“让刀”变形(见图2),因此,应用一个立铣刀很难实现薄壁零件的高精加工。常规的小进给量和低切深的方法虽然可以满足一定的加工精度,但是效率比较低。平行双主轴方案可以有效的解决单一主轴加工零件的变形问题。该方法需要同时应用两个回转半径、有效长度及螺旋升角大小相同的立铣刀,刀刃分别为左旋和右旋(见图3)。采用平行双主轴加工方案,由于工件两侧受力为对称力,所以除了微量的刀具变形引起的加工误差以外,工件的加工倾斜变形基本上可以消除。
图2单轴铣削示意图
图3双轴铣削示意图
null
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈