由于操作过于频繁,请点击下方按钮进行验证!

2020年趋势风向标,工业互联网人工智能应用将成为基本底座

临近年末,多个研究机构纷纷发布对于2020年的趋势预测,其中很多预测与我担任“首届中国工业互联网大赛”和“第二届工业APP开发与应用创新大赛”评委过程中观察到的现象高度匹配。

这些趋势背后潜藏巨大机遇,而机遇总是在不经意间到来,然后悄无声息的离开,看懂和抓住他们,对于当下的物联网企业尤为重要。接下来的几周,我将逐一为你呈现这些稍纵即逝的新机遇。

一直以来,我们都把物联网平台视为基座,各种IoT应用搭载于平台之上。从技术架构的角度理解,这个视角无可厚非。

但是如果我们反过来看这个问题,其实是各种各样的物联网应用为平台带来了生态活力和客户价值。

具有锚定效应的是物联网应用,他们才是事实上的基座。

IoT平台的作用是为各种物联网应用解决发展中遇到的问题,创造资源共通、价值共创、利润共享的环境,从而激发IoT应用与平台共生的关系和意愿。

IDC曾经预测,2019年将有40%的企业数字化转型工作由AI人工智能提供支持。在2020年,各种趋势均明确指向,IIoT应用这个基座即将完成一次升级,将以工业互联网人工智能IIoT-AI应用为“硬核”。

各个研究机构的分析对象,也从单纯的工业互联网转移到了工业互联网叠加工业人工智能。

ABI research发布了《工业人工智能平台和服务提供商竞争格局评估》、Frost & Sullivan发布了《全球新型工业互联网人工智能平台厂商分析》、两化融合服务联盟和微软共同发布了《工业互联网人工智能应用白皮书》…这些研究报告仅是其中的一些代表。

有些报告虽然名为工业人工智能平台,实为工业互联网人工智能IIoT-AI应用与平台一体。

工业人工智能应用的深度,也已经从最初的机器视觉图像和视频分析,渗透到依据机理模型的智能决策领域。

因此在本文中,你将看到:

●工业互联网叠加工业人工智能,到底怎么“加”?

●工业互联网人工智能应用沿着什么趋势发展?

●工业互联网人工智能应用的代表性项目有哪些?

01想叠加,先解耦

工业互联网本质上是一种新经济。

最近几年,工业互联网的数据量正在爆发,有了充足的数据“喂养”,工业互联网新经济却没有实现预期中的快速增长。

根据IDC的分析数据,到2025年物联网设备在一年内创造的数据总量将接近80 ZB。ABI Research的报告认为,到2024年工业制造领域中支持的AI设备总安装量将超过1500万,从2019年到2024年间的复合年增长率为65%。

虽然过去视频监控数据构成了物联网数据中的很大一部分,但从我身处物联网行业中的直接感受判断,来自工业、汽车、物流等领域的非视频类数据量的增加也在全面提速。

IDC的客观调研也印证了我的主观感受——IDC认为仅靠来自工业制造和智能网联汽车的数据,就能带动整个物联网领域实现60%的数据增长。

如此大量的数据采集与分析需求,按理说应该可以快速推动工业互联网的发展。但总体而言,工业互联网并没有获得预期的市场认可度,尤其在中小企业的应用覆盖率相对较低。

主要的问题不在需求方,而在供给方。

试想一下,如果出现一款低成本的IIoT“杀手级”应用,并且有一整套成熟方案帮助工业企业快速实施该应用,相信大部分工业企业会选择尝试。

根据《工业互联网人工智能应用白皮书》中的分析,工业互联网领域尚未出现“杀手级”应用的原因如下图,可以总结为“行业复制推广难度大”和“现有工业互联网框架不友好”这两点。


站在2019年底这个时点复盘,掌控过程是关键,只有不一样的过程,才能引发工业互联网实现快速增长的结果。

这个过程的核心就是解耦。

解耦的思路来源于软件体系。在软件工程中,解耦通过降低耦合度,来降低模块间的依赖性。

工业互联网中各类组件、模块、应用的耦合度越低,可复制性就越高。进而实现IIoT应用的实施从“项目型”转化为“工具式”,从“全集成”转化为“被集成”,利于快速复制推广。

尤其是在工业互联网与工业人工智能相叠加的场景下,复杂度越高,对解耦能力、协同效率、更新迭代的要求越高。

●首先,工业互联网人工智能IIoT-AI本质上是一种算法,需要大量的数据作为支撑。解耦之后,专业的数据采集商能开发出成本更低、通用性更高的设备连接解决方案,应用提供数量更多、质量更高的数据素材。

●其次,工业互联网人工智能IIoT-AI通过分析,将数据转换为洞察,而这些洞察与决策可以作为输入项,重新应用到其它分析中,实现数据流动的延伸。

●最后,工业互联网人工智能IIoT-AI技术处于初级阶段,当面对场景复杂、非逻辑性的问题时,IIoT-AI则力有不及。解耦有助于具体细分场景的定义,更适合工业人工智能应用的发展。

02瘦身感、边缘化

根据数据数量、质量的情况不同,目前存在两种工业互联网人工智能IIoT-AI技术的实现方式:


在工业互联网应用中,工业人工智能可以调配的算力有限,需要“瘦身感”。

当前数据在边缘计算的转化过程中大致遵循二八原则,即80%的数据尚未得到优化利用。若要提高数据转化率,既需要效率更高的数据采集,也需要边缘设备具备数据处理和预分析的能力。

因此在设备管理、质量监控、安全管理等场景,“小数据+人工智能+专家”的方式很有发展潜力。这种方式的思路是融合专家经验,充分利用和挖掘已有数据信息,使用收敛快、效率高的人工智能算法,非常符合工业现场历史数据普遍不足、数据质量参差不齐的现状。

更进一步,工业场景需要极强的实时响应能力,因此工业人工智能需要能被应用在边缘设备中,而不是“假装”在边缘处理数据,实则悄悄传回云端分析。因此工业人工智能在应用场景深化以及技术日趋成熟的推动下,正在进一步向边缘侧迁移,推进边缘计算与智能。

从云端到边缘,人工智能面临的挑战并不仅仅限于计算位置迁移。

工业人工智能与普遍意义上的人工智能有本质不同。很多人工智能的原有前提假设在边缘场景并不成立,运行时间和计算能力在边缘侧面临很大变化,人工智能模型势必重新适应新的环境。

根据Foghorn公司的实践,用于云端的人工智能模型往往根本无法应用于边缘侧,AI模型需要压缩“瘦身”高达80%,才能被边缘设备使用,满足工业应用场景。

03IIoT-AI应用场景

IIoT-AI的应用场景正在集中爆发,在设备管理、生产质量分析,制造物流与供应链管理等领域,工业互联网人工智能都有可规模化复制的落地案例。

在设备管理方面,天泽智云创新性的采用了音频传感器。

他们针对在风电领域现有风机叶片状态检测手段收效欠佳的问题,使用不接触叶片的声音传感器,实时采集叶片运行过程中的音频数据,并配合工业智能算法,通过分析这些音频数据识别叶片的早期异常。

这套工业互联网人工智能应用有效延长了叶片使用寿命,大幅降低了叶片大修、断裂等重大风险。


在生产质量分析方面,蕴硕物联以焊接、喷涂场景作为切入点,从工业人工智能的预测性监控决策切入,力图改变企业痛点与技术能力的不匹配现状。

焊接与喷涂工艺广泛应用于车辆、轨道交通船舶、家电等领域,蕴硕物联的工业人工智能应用实现了加工质量的预测性监控,将质量管理从事后发现,推向事前预防、事中发现的上游流程,改善企业的加工绩效。


在制造物流与供应链管理方面,微软和马士基共同完成的案例堪称经典。

马士基是集装箱运输和港口业务的全球领导者,通过工业人工智能应用,马士基可以帮助客户更好地跟踪产品的运输过程,及时发现由恶劣天气、集装箱船舶失事、或者铁路罢工导致的供应链中断,并且在遇到麻烦时仍然能够尽量保证货物的连续运输。


本文小结:

1. 工业互联网本质上是一种新经济。最近几年,工业互联网的数据量正在爆发,有了充足的数据“喂养”,工业互联网新经济却没有实现预期中的快速增长。

2. 站在2019年底这个时点复盘,掌控过程是关键,只有不一样的过程,才能引发工业互联网实现快速增长的结果。这个过程的核心就是解耦。

3. 在工业互联网应用中,工业人工智能可以调配的算力有限,需要“瘦身感”。从云端到边缘,人工智能面临的挑战并不仅仅限于计算位置迁移。人工智能模型需要“瘦身”高达80%,才能被边缘设备使用,满足工业应用场景。

参考资料:

Industrial AI Platform and Service ProviderCompetitive Assessment

Frost Radar Global Emerging IndustrialIoT-AI Platform Vendors

Maersk safely transports goods around theglobe with Microsoft Azure and IoT

Microsoft furthers $5 billion IoT plan withnew Azure features

工业互联网人工智能应用白皮书

首届中国工业互联网大赛晋级复赛名单公告

(控制工程网)

声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到

相关主题