数控刀具的发展
- 数控刀具材料“对症下药”,重视超硬超细材料的开发
- 切削刀具材料是决定刀具切削性能尤其是刀具切削效率和可靠性的基础。“对症下药”,针对工件的特点(材料性能、加工余量、批量、要求等)开发匹配的特定刀具材质是当今的一个发展趋势。钴高速钢、粉末冶金高速钢、硬质合金(包括超细颗粒硬质合金)以及陶瓷、金属陶瓷等材料在数控刀具上得到了迅速推广和广泛应用。尤其是数控刀具、可转位不重磨刀片用硬质合金牌号近年来发展迅速,占主要份额。亚微米级超细颗粒硬质合金材料显著提高了刀具的切削机械性能(强度、硬度)。对于复杂成型数控齿轮刀具,钴高速钢和粉末高速钢则大有取代传统高速钢的趋势。随着有色金属材料、有机复合材料甚至木材等切削加工需求的增加,尤其是汽车(气缸体、气缸盖、活塞等)、航空航天、军工、家具制造业的发展,硅铝合金、铝镁合金、复合蜂窝材料零件以及淬硬工件的加工,推动了聚晶金刚石 (PCD)、立方氮化硼(CBN)等超硬刀具材料制造技术的进步。环保要求的提倡,干切削技术和微量冷液却、低温气冷却技术应运而生,对切削刀具材料(及涂层)的抗高温性能提出了新要求——优良的高温红硬性、高温抗粘合性、高温摩擦性能等对实施干切削数控刀具的使用性能至关重要。
- 数控刀具涂层发展迅速,新涂层层出不穷
- 刀具涂层是决定刀具切削性能尤其是刀具切削效率和可靠性的另一项关键技术,符合节约型发展的要求:切削效率显著提高,刀具性能明显改善、使用寿命成倍增加,既节省了资源,又降低了成本。近年来,刀具涂层技术发展空前迅猛,新的涂层装备和涂层材料层出不穷。在传统的TiN、TiC、TiCN、Al2O3涂层的基础上,发展了高温红硬性更好的TiAlN、TiBN、TiAlBN、CrN、CrC、SN2等新涂层,以及可改善自润滑性能的软涂层MoS2。金刚石涂层、类金刚石涂层DCL以及CBN涂层等也得到了快速的发展。纳米涂层结构在同样的涂层情况下可显著提高涂层性能,备受重视。
- 目前。切削刀具的涂层工艺主要采用化学涂层(CVD)和物理涂层(PVD)二大类。由于物理涂层工作温度低,对刀具基体强度影响小,保持刀具几何精度和刃口切削性能好,因此使用较多。成都工具研究所的热阴极离子镀技术和设备、西安理工大学和英国合作生产的闭合场非平衡磁控溅射离子镀及设备,以及德国 CemeCon公司的高电离溅射涂层技术和设备,部分反映了当今涂层技术及装备的现状和发展趋势,在高速钢复杂成型刀具以及硬质合金数控刀具的涂层应用上获得了很好效果。近年来,上海工具厂和贵阳工具厂分别引进了新型涂层设备,哈一工和PVT、汉江工具和BALZERS也分别成立了联合涂层中心,以及多家国外公司在国内开设的刀具涂层服务中心推动了国产复杂成型刀具、数控刀具及刀片涂层质量的迅速提高,向国际先进水平进一步靠拢。
- 需要提及的是,要重视工件材料与切削刀具基体和涂层的优化配置。株洲硬质合金厂及株洲钻石切削刀具公司近年投资数亿元,通过引进技术,在硬质合金新材料牌号、涂层技术及设备、可转位数控刀片和整体硬质合金数控刀具的开发和生产方面取得了明显成效。
- 数控刀具和工具系统满足高速、复合切削的要求
- 数控刀具和可转位数控刀片结构及几何参数的创新优化设计,如新型精密成型的断屑槽型的开发,有效的改善了刀具的切削性能。近年来,数控组合刀具和复合刀具的开发步伐加快。如波状切削刃粗切滚刀和精切滚刀组合、齿轮滚刀和去毛刺刀具组合均使滚削加工效率得到了提高。为了适应CNC复合车铣加工中心的要求,在工件一次安装中完成平面、圆柱面、孔以及螺纹切削加工的要求,开发了满足车铣自动换刀的新型数控刀柄。株洲钻石投资引进技术、上工和SU的合作都将进一步提高我国数控刀具和齿轮刀具的设计制造水平。
- 工具系统将数控刀具与数控机床主轴精密牢固连接,决定刀具的夹持精度,传递刀具的切削运动和动力。对于高速高效加工,传统的采用单面(锥面)约束夹紧、带有7∶24锥度的工具系统已经不能满足要求,而HSK工具系统(带有1∶10锥面)得到了推广应用。它采用双面(锥面和端平面)约束夹紧原理,接触刚度和传递扭矩大大提高,近年在国内的推广也有所进展,但主要是与进口机床配套使用,其主要原因在于机床主轴和工具系统的制造中基准的建立和传递、计量检测装备和手段的配备问题。日本大昭和精机开发了带有7∶24锥的双面(锥面和端平面)约束夹紧工具系统,不仅可达到与HSK相似的效果,还能与传统7∶24锥柄刀具互换。最近哈尔滨量具刃具厂收购了德国KELCH公司,吸纳了先进的数控工具系统成套制造技术(设计、加工制造、检测、工作基准规等),此举将推动并加快我国数控工具系统和数控刀具开发制造的进程。
- 数控刀具测量仪器
- 为确保高切削性能、高精度、形状和结构复杂的数控刀具的质量,数控刀具检测仪器得到重视。如德国Zoller公司的Saturn系列CCD数控刀具预调仪、 Schenck公司的Tooldyne SV数控刀具动平衡检测仪等发展迅速,国外高端新产品不断进入市场。德国BLUM公司和英国RENISHAW公司的非接触式在机数控刀具检测仪,采用了喷气装置,能在数控机床加工过程中,在刀具快速回转时在机床上精密检测并设置刀具的长度、半径、径向跳动,也可监控刀具刃口形状误差和破损。此外还能测量并补偿因温度变化造成的刀具相对位置误差,提高了机床的加工精度。
- 数控刀具闭环制造系统
- 将测量技术和装备集成于数控刀具的机械加工制造过程中,推动了数控刀具数字化制造技术的发展。德国WALTER公司的数控刀具闭环制造系统和 Klingelnberg公司的弧锥齿轮刀具闭环制造系统就是这项数控刀具先进制造技术的实例。系统通过计算机通讯,可实现从CAD、CAM、CAI到 CAM再加工直至质量达到要求,实现数控刀具“零废品”制造。数控刀具整个制造系统信息实现了集成和融合。
- 数控刀具切削数据库集成于数控机床,也是数控切削技术发展的一个重要内容。我国已开始探索起步。实现该技术的关键是数据的可行性和实用性。成都工具研究所在网上开通的金属切削数据库查询服务工作集成了工具所从“六五”以来的相关研究成果。随着切削技术的发展,尤其是高速、高效、难加工材料切削技术的发展,数据库应适应发展需要,不断更新、补充和提高。
- 对于数控切削加工系统而言,必须重视数控刀具制造技术的发展,重视切削机理、数控刀具的设计、材料、制造工艺、刃口强化技术、表面强化技术、数控刀具检测技术直至数控刀具切削数据库等数控刀具制造全过程的技术发展和质量管理。采用先进信息技术,将数控刀具制造闭环系统中各个环节(包括应用)的信息进行集成、分析、诊断、反馈,以提高制造质量和水平,这对于数控刀具制造技术的发展至关重要,对于数控切削加工技术的发展也至关重要。
数字化精密量仪的发展
- 数字化精密测量仪器的新动向——进入生产现场,非接触扫描测量倍受重视
- 三坐标测量机作为精密测量仪器的基本型主导产品,继续在机械制造业中得到重视和发展。以三坐标测量机为代表的精密测量仪器进入车间、服务于生产现场是发展的一个重要趋势。例如,LEITZ公司的精密三坐标测量机在车间用于测量大型齿轮就是一例。将数字化测量系统集成到数控加工机床上是另一个发展趋势。例如,秦川机床厂的CNC成型齿轮磨床集成了在机齿轮测量系统。与光学/激光非接触式扫描测量技术相结合,实现多功能、多种传感器的集成和融合,使坐标测量技术的应用更加丰富,更适用于生产现场。
- 汽车大型覆盖件的非接触扫描测量精确而快速
- 配备有光学/激光式非接触扫描传感器的水平臂三坐标测量机实现了对汽车大型覆盖件的快速精密检测。德国ZEISS公司和瑞典HEXAGON集团等世界著名三坐标测量机制造厂在该领域进行了开发。瑞典HEXAGON集团所属DEA公司的PRIMA C1系列水平臂测量机在CW43L型连续伺服关节测座上,可配备触发式测头、连续扫描测头、光学或激光扫描测头等多种测头,以适应不同测量环境和任务的要求。德国ZEISS公司的PROR Premium坐标测量机配备有EagleEye导航系统和可控测座,能够在汽车车身大型覆盖件尤其是车身分总成的质量过程控制中,对工件的几何参数、表面和边缘的特征点、间隙和贴合性等实施高速精密测量。
- 带激光扫描测量系统的便携式柔性关节臂测量机功能增强
- 美国 CIMCORE公司推出了配备有先进激光扫描测量系统的关节臂测量机。该仪器采用碳纤维材料制造,重量轻而刚性好,其中INFINITE系列的还具有无线通讯功能。仪器采用PC-DMIS软件,测量功能强。配上管件测量系统附件,还可实现对管件的长度、弯曲度、回弹等多种数据的测量和比较。测量范围为 1.2m的仪器点测重复精度达0.010mm,空间精度达0.015mm。用于反求工程时,不仅测量速度快,而且可实现测量过程的实时显示和补漏测量数据的无缝拼接。该仪器可用于三坐标测量、三维造型、产品测绘、反求工程、现场测量以及模具设计制造等涉及到设计、制造、过程检测、在线检测以及产品最终检测等测量工作。美国FARO技术公司的FaroARM系列便携式三坐标测量臂具备类似的技术指标和性能。我国西安爱德华测量机公司2005年也公开展示了自主开发的柔性关节臂测量机的样机。
- 轴类零件光电非接触测量仪器发展迅速
- 汽车制造业的需求大大推进了轴类精密零件非接触测量技术的发展。瑞士TESA公司的TESA Scan系列轴类零件快速扫描测量仪采用2个线阵CCD组件,通过工件的回转和轴向移动对工件进行投影扫描,可实现对轴类零件位置误差和形状误差的精确检测、对截面形状和轮廓度的评估比较以及统计质量分析,还能对零件的局部(如过渡曲线、微小沟槽等)进行放大测量。由于工件立柱可以倾斜,因而能对螺纹、蜗杆、丝杆等进行全参数精度的精确测量,这是该仪器PLUS系列的一大特色。仪器在直径方向上的分辨力为0.0003mm,精度2+(0.01D)µm,重复性0.001mm。德国SCHNEIDER的WMM系列轴类及工具测量仪操作简单、测量速度高,特别适用于车间检查站。仪器采用高分辨力的Matrix 摄像头,可以快速获取测量数据。仪器数显分辨力为0.0001mm,长度测量不确定度为E2=(2.0+L/200)µm(L单位为mm)。
- 中小尺寸平面类精密零件的二维、三维非接触测量仪器应用广泛
- 带CCD 数字摄像头、激光测头、触发测头的多传感测头光学坐标测量仪器得到了快速发展。除德国MAHR公司的MARVISION系列三维光学坐标测量机、瑞士 TESA公司的三坐标成像测量系统TESA VISIO、德国SCHNEIDER公司的SKM系列3D多测头坐标测量机等典型产品外,美国OGP公司等著名厂商也有相应产品展示。日本三丰公司CNC 视像测量系统系列产品中的SV350-pro型测量机采用了自制的超高精度、高分辨力、低膨胀玻璃光栅基准尺,仪器分辨力0.01µm,X、Y轴测量精度为(0.3+L/1000)µm,Z轴测量精度为(1+2L/1000)µm。三丰公司的Hyper MF型测量显微镜的X、Y轴测量精度超过日本标准规定的0级,达±(0.9+3L/1000)µm,仪器分辨力0.01µm,是用于精密模具、精密切削刀具以及超小半导体电子元件(如芯片和集成电路等)精密检测的理想选择。国内西安爱德华、东莞万濠、苏州怡信、深圳鑫磊以及北京天地宇等公司也开发了类似产品。贵阳新天光电公司近年注重新品开发,2004年成功推出了JX13C图像处理万能工具显微镜,采用金属光栅和高分辨力的CCD摄像头,仪器测量精度达到(1.0+L/100)µm,采用半导体激光导向快速确定测量位置。JX15A/B型视频测量显微镜同样采用了CCD数字成像技术,将采集到的被测工件图像送入计算机进行处理,进行相应几何精度的检测,产品技术指标和水平上了一个档次。深圳智泰公司VMT系列的3D影像量测仪,在CCD视觉测量系统上配备上高精度触发式测头,实现了多功能测量。
- 三坐标测量机作为精密测量仪器的基本型主导产品,继续在机械制造业中得到重视和发展。以三坐标测量机为代表的精密测量仪器进入车间、服务于生产现场是发展的一个重要趋势。例如,LEITZ公司的精密三坐标测量机在车间用于测量大型齿轮就是一例。将数字化测量系统集成到数控加工机床上是另一个发展趋势。例如,秦川机床厂的CNC成型齿轮磨床集成了在机齿轮测量系统。与光学/激光非接触式扫描测量技术相结合,实现多功能、多种传感器的集成和融合,使坐标测量技术的应用更加丰富,更适用于生产现场。
- 数控机床精度检测用激光测量技术的新进展
- 为确保数控切削加工的质量,除了在加工过程中和加工完成后对数控切削加工系统(包括工件在内)进行可行的监控检测外,在加工前对数控机床的精度和性能进行检测,以便确切了解掌握机床质量现状,进而进行必要的调整补偿,使其达到最佳运行性能,是一项非常重要的质量控制措施。
- 众所周知,国外著名厂商Renishaw、API及HP等公司生产的激光干涉仪测量系统和球杆仪等在数控机床的几何精度和运动精度的检测和监控中,无论在机床制造厂还是机床使用厂,都得到了广泛的应用。Renishaw公司的金牌M10激光干涉测量系统,配备了高精度、高灵敏度的温度、气压、湿度传感器及 EC10环境补偿装置,在工作环境下测量精度得到进一步提高;API公司的Rmtea六维激光测量系统可同时测量6个数控机床精度项目的误差,缩短了检测时间,为生产现场数控机床的检测和诊断提供了更为快速高效的精密测量手段。成都工具研究所的MJS系列双频激光干涉仪,分辨力0.01µm,测量软件覆盖了我国和世界主要工业国的数控机床精度标准评定方法和指标,动态采样功能可用于自动补偿。
- 美国光动(Optodyne)公司近年推出的基于体对角线的激光矢量测量技术是快速测量和补偿数控机床、加工中心三维空间位置误差的一个新途径。该技术由美国光动公司发明并获得专利,它遵循了 ASME B5.54(1)和ISO0230-6(2)机床测量标准中对体对角线误差测量的要求。对于构成(X,Y,Z)直角坐标系的三轴机床的21项几何误差,采用传统激光干涉仪等来进行检测相当费时。基于分步体对角线矢量测量原理,光动公司采用专利的激光多普勒位移测量仪,借助大平面反射镜完成四条对角线空间位置误差的测量,获得12组数据。通过计算确定机床12项基本误差(3项位移误差,6项直线度误差和3项垂直度误差),最终得到数控机床三维空间位置(定位)误差。该公司曾介绍了在加工中心上进行实际测量和补偿的应用实例,借此表明该测量新技术在数控加工机床的精度检测和精度补偿上的可行性。对该项测量技术的认识、推广应用的实际效果和前景值得行业关注。
结束语
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
网友评论
匿名:
最新反馈
- 暂无反馈
无须注册,轻松沟通