由于操作过于频繁,请点击下方按钮进行验证!

提高数控仿形精度的控制方法

仿形速度对于仿形加工的精度有主要影响,对于曲面过渡变化较大的型面,速度太快,仿形运动稳定性较差,仿形精度就会很低。而对于仿形运动来讲,未来路径上的模型表面是未知的,因此仿形加工也就不可能有前瞻(Look-ahead)的功能。如果仿形加工始终采用一种速度,要想得到理想的精度,就不得不降低仿形速度,这样就严重影响了加工效率。因此,在仿形过程中,针对不同的模型表面情况,采用特殊的控制方法,实时地调整仿形速度,进而得到较高的仿形加工稳定性和精度,就显得极有意义了。

1 仿形运动分析

对于仿形加工,仿形仪压偏量的大小影响加工的稳定性和精度。在仿形加工中总要设定一个预期的压偏量,仿形过程中实际压偏量越接近预期压偏量,仿形稳定性和精度就越高,反之,仿形稳定性和精度就越低。
图1 仿形压偏量曲线
(v=1000mm/min)
图2 仿形压偏量曲线
(v=2000mm/min)
图1和图2是仿形过程中模型型面、仿形速度及压偏量的关系曲线图,图1a,图2a为沿仿形方向截得的模型表面轮廓曲线图,两轮廓基本相同,图1b、图2b为与之对应的仿形仪压偏量变化图,但速度不同。仿形过程中预期压偏量为400μm。分析图1和图2的实验结果,可以得到如下结论:
  1. 平面仿形精度高于曲面仿形,且仿形精度受仿形速度的影响较小;
  2. 曲面过渡越平缓,实际的压偏量越接近预期压偏量,仿形精度也越高;曲面过渡越剧烈,实际压偏量偏离预期压偏量的值越大,精度就越低;
  3. 曲面仿形速度对仿形精度的影响较大,在同样的曲面上,仿形速度越大,仿形精度越低;
  4. 模型曲面上的形状急剧变化处,如棱角、直壁、边缘等处,仿形仪压偏量变化很大,严重时会造成不正常的离模现象。

2 仿形控制的改进方法

仿形加工过程中,在模型曲面过渡平缓的位置时,可以采用较高的仿形速度,而当仿形头在接近模型曲面变化剧烈的位置时,通过特殊控制方法使之减速,这时仿形头的速度较低,惯性较小,这样就可以使超调和欠调减小到最低限度,进而提高仿形加工的稳定性和精度。同时也可提高仿形加工的效率。
  1. 软减速电位线法
    在仿形过程中,在模型棱角部分、曲面急剧变化等特殊位置附近设置软减速电位线(图3)。当仿形头在软减速线控制范围中时,以较低的速度进行仿形加工,其余均采用较高的理想仿形速度。以XOZ平面扫描,Y方向周期进给仿形方式为例进行讨论。软减速电位线的节点用Point来表示:
    struct Point{
    float X;
    float Y;
    }P[n];

    ∥节点的X方向坐标
    ∥节点的Y方向坐标
    ∥N个节点


    图3 软减速电位线法

    图4 软减速电位线控制模块程序框图
    根据模型的特点,输入num≤n个节点坐标,就可以确定软减速电位线的位置。考虑到模型型面的复杂程度,可以最多设置m条软减速电位线。下面讨论中软减速电位线个数取为m,节点个数取为n。软减速电位线用Line表示:
    struct Line{
    struct P[n]
    float rg;
    }L[m];

    ∥软减速电位线的节点
    ∥软减速电位线的控制范围
    ∥m条软减速电位线
  2. 自记录控制法
    在仿形加工过程中,利用自记录控制法,记录第一次扫描路径中模型表面的形状急剧变化处,如直壁、边缘、折角等的位置。在以后的扫描路径中,遇到这些位置,仿形速度提前降低,进而避免仿形仪压偏量的大幅度波动,提高仿形加工稳定性和精度。该控制方法针对的模型有一定局限性,比较适合图3中的在某方向截面有类似性的模型,但其程序实现较为简单,并且实际中的模型也多为此种情况。
    当然,也可以边仿形边记录模型表面的特殊位置,即把新的特殊位置按一定格式(该格式应与仿形方式相对应,以便于查找)插入到记录点的序列中去,并且始终检查本采样周期记录点处压偏量的变化情况,当其实时值与预定压偏量的差值小于某设定值时,便认为该记录点处的模型表面情况已平缓,进而把该记录点剔除。该过程要占用相当的CPU时间,由于该控制模块嵌在伺服控制模块中,为中断执行方式,所以会对控制过程产生一定影响,比如数据采集的速度。程序实现也较复杂。
    在此,仍以XOZ平面扫描、Y方向周期进给仿形方式为例。记录采用偏差控制,仅记录第一次仿形路径上的特殊位置。在仿形过程中,当实际仿形压偏量Dact与预期压偏量Ddes的偏差|Dact-Ddes|≥Dlim(其中Dlim是预定的偏差量),则记录该位置点。为了避免记录点记录得过密,而占用过多内存,且在实际应用上不具意义,通过实验人为设定一个最大记录距离,当本采样点与前一记录点的距离小于该最大距离时,该点不作为被记录点。利用链表结构有利于节省内存,且便于记录和查找,可节省时间。记录点用以下Learn表示
    struct Learn{
    float X;
    int Dir;
    struct learn *next;
    };

    ∥记录点的位置
    ∥减速的方向
    该控制方法的程序实现见图5、图6。其中Fdir为仿形方向,Flg为减速标志,Xact为实时的仿形头位置。
    图5 “自记录”记录模块程序框图 图6 “自记录”判断模块程序框图

3 实验

对这两种控制方法进行实验,仍采用图1、2中的模型截面进行仿形,理想仿形速度为2000mm/min,低速度为1000mm/min。在“软减速电位线法”中,两条软电位线对应于截面的节点分别在X,Y=10mm和X,Y=75mm处,控制范围为20mm,仿形过程中记录实时压偏量变化情况,得到图7的压偏量与位置关系图。通过分析可以得出,在0~10mm、30~75mm及最终路径上,虽采用较高速度,但由于模型型面变化较为平缓,压偏量波动较小。在10~30mm、75~95mm型面变化较为剧烈的特殊位置上,由于采用了低速度,压偏量波动情况明显好于图2中的情况。在“自记录控制法”中,预定的偏差量为50μm,记录压偏量波动情况,会得到同图7极为类似的图形,在此不再赘述。
图7 软减速电位线法压偏量曲线图

4 结束语

  1. 实验证明,利用“软减速电位线法”和“自记录控制法”可以较好地解决由于模型表面形状带来的仿形加工不稳定问题,提高了仿形加工精度,同时也提高了仿形加工的效率;
  2. 由于仿形速度对仿形精度有较大影响,如果要求较高的加工速度,可以利用数字化方法采集数据,处理后进行数字化加工,这样就可以避免仿形加工中高速度带来的问题,进而获得较高的加工精度;
  3. 同一曲面,同一仿形速度,不同的仿形方式,获得的加工精度存在较大差异,因此应当针对具体模型的表面形状,采用合适的仿形加工方式,以获得理想的加工精度。

 


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到