位于美国新墨西哥州的圣地亚国家实验室(Sandia National Laboratories)对尺寸仅为10μm和20μm的微型车刀和铣刀进行了切削实验与研究。
虽然“微加工(micro machining)”这一术语可用于表示在极小尺度范围内完成的各种加工操作,但圣地亚国家实验室的研究人员却避免将他们进行的微小尺度车削和铣削加工称为“微加工”。他们认为,在“加工”一词前面冠以“微(micro)”的前缀,则表示用该加工方法可加工出尺寸小至1μm的工件形貌,而该实验室目前还做不到这一点——至少在车削和铣削加工上还达不到这一水平,目前他们研制的微型刀具能够加工出的工件形貌尺寸最小可达到25μm。换句话说,虽然他们已达到的加工尺度水平还不能称为“微加工”,但已比几乎任何其它金属切削加工车间都更接近“微加工”的目标。圣地亚国家实验室的研究人员将这种尺度水平的加工称为“亚微加工(meso-machining)”。
亚微加工所用的微型铣刀和微型车刀是采用聚焦离子束对硬质合金和高速钢刀坯材料进行雕蚀加工而成。用该方法制造的微型立铣刀的直径可小至约20μm;微型车刀的宽度可小至约10μm。这种微型刀具是实现亚微加工所必不可少的关键工艺因素,因为目前在机床上使用这种微型刀具的适用加工技术已基本成熟。在圣地亚国家实验室,虽然仍然需要全力开发亚微切削实验所用的微型刀具,但实验所用加工机床已完全具备了使用微型刀具的技术条件。研究人员利用市场上机床供货商提供的精密加工机床,即可有效地使用微型刀具进行亚微切削加工。
美国开展亚微加工研究的一个主要原因与核武器有关。美国现存核武器上的某些零件需要经常更换,并且需要对这些零件的结构形貌不断进行改进。但是,因为核武器上的各个零件与周围其它零件之间都有不允许改变的装配关系,所以每一个零件的尺寸和外形都必须保持固定不变。因此,为了在零件上增加新的结构形貌,惟一的途径就是将更多结构微缩于现有空间之中,而亚微加工可以成为实现这一目标的一种有效手段。
圣地亚国家实验室通过大量实验研究,已可在包括铝、黄铜、4340钢等材料上成功地铣削出宽度20~30μm的槽,典型切削深度为1μm。该实验室用一把φ22μm硬质合金双刃立铣刀进行的切削实验表明,在切深1μm、转速18000r/min的切削条件下加工铝件时,微型立铣刀能以最大至50mm/min的进给率进行有效切削,刀具铣削时间超过6小时以上,且在整个进给率变化范围内未发生刀具破损现象。
微型车刀的切削可靠性也已得到证实。典型的切削实验表明,一把宽度为13μm的微型车刀能够在全长200mm的铝件上切出深度为4μm的螺旋槽。
微型车刀的几何形状与常规尺寸车刀类似,而微型铣刀的几何形状则与常规尺寸铣刀有所不同。由于用聚焦离子束对微型铣刀进行成形加工时,难以加工出典型的标准立铣刀带有容屑槽的复杂几何形状,因此,亚微加工用微型立铣刀的刀体剖面几何形状较为简单。
微型刀具的切削机理与常规尺寸刀具基本相同,可看作是常规刀具切削的“微缩版”。用光学显微镜对亚微铣削过程的观测表明,切屑可从铣刀附近快速排出。此外,用电子显微镜观测表明,铣削工件表面同样出现了切削刀痕。对亚微车削的观测结果也清楚地表明,与常规尺寸车刀加工的常见现象一样,用亚微车刀切削后,也经常可以发现刀具上粘附有长条形切屑。
上述亚微铣削实验是在一台上世纪九十年代购进的Boston Digital加工中心上进行的。该机床的位移分辨率达到1μm,因此可以利用在手动铣床加工中常用的“触发(touching off)”对刀方式来实现微型铣刀相对于工件的定位。研究人员采用手动方式,以每次1μm的步距持续缓慢地微动进刀,直至通过显微镜观察到出现了一点切屑,即表明此时铣刀已刚好与工件接触。
最近,圣地亚国家实验室又在一台Willemin-Macodel公司的精密加工中心上进行了亚微铣削的实验研究。亚微车削实验则是在一台Moore Tool公司的金刚石车床上进行的(虽然使用的微型车刀材料并不是金刚石)。该实验室还在Agie公司的线切割机和电火花成形机上进行了亚微放电加工(EDM)的实验研究。此外,亚微激光加工也是该实验室亚微加工研究的另一重要领域。
目前,亚微车削比亚微铣削更具实用性。对于亚微铣削而言,制约其应用的因素除了亚微刀具制造工艺难以复制出传统立铣刀的复杂几何形状外,另一个原因是很难将安装在刀夹中的微型铣刀的径向跳动减小至一把直径仅20μm的刀具可以容许的误差范围内。另一个问题是目前对亚微铣削的需求还不多。圣地亚国家实验室的用户迄今提出的研制要求是需要直径小于130μm的铣刀。对于某些工件形貌,例如微型外齿轮的轮齿,实验室趋向于采用线切割机进行放电加工(EDM)。不过,如果需要加工微型内齿轮的轮齿,则可能需要采用亚微铣削。
虽然存在上述问题,对各种亚微加工方法(包括亚微铣削)的实验研究仍在继续进行。为了避免因铣刀夹持及与此相关的铣刀径跳引起的问题,圣地亚国家实验室正在对一种可带动刀具旋转而不需要刀具夹头的专用主轴进行实验,这种由佛罗里达大学开发的主轴转速可高达500000r/min。
影响亚微切削加工的另一个常见问题是使用亚微刀具需要较高的专业知识水平。亚微切削加工与常规切削加工的要求不同。在常规切削中,刀具、工件和加工程序可在不同的机床之间替换使用;而亚微切削则要求操作者必须了解在不同的加工环境下微小误差的叠加规律有何不同,以及选择的特定切削参数(如切削速度、进给率等)是如何影响特定机床的加工精度的。要成为一个熟练的亚微切削操作者,可能需要好多个月的时间不断进行学习和实践,以正确掌握亚微切削的技术知识和操作要领。这种较高的技术要求大大限制了亚微切削技术的推广应用。即使在圣地亚国家实验室的五、六十名技术精湛的机械技师中,也只有少数几人能够熟练掌握此项操作技术。
亚微加工技术的发展现状可总结如下:
1) 聚焦离子束工艺(用于制造亚微刀具):可加工最小形貌尺寸:200nm,公差20nm;材料去除率:0.5μm3/sec;可加工材料:任何材料。
2) 亚微铣削、亚微车削:可加工最小形貌尺寸:25μm(车削可达10μm),公差2μm;材料去除率:10400μm3/sec;可加工材料:铝,黄铜,低碳钢,PMMA塑料。
3) 亚微放电加工(EDM):可加工最小形貌尺寸:25μm,公差3μm;材料去除率:25×106μm3/sec;可加工材料:导电材料。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈