由于操作过于频繁,请点击下方按钮进行验证!

嵌入式系统电源管理实现对比

引言:

  高端ARM处理器还支持功能更强大的电源管理功能,通过电压调节与频率调节相结合,极大地降低功耗,提高能量效率。

 

  据ARM估计,32位的Cortex-M3处理器内核以0.19mW/MHz(0.18微米)极低的功耗在特殊应用中占据优势。32位Cortex-M3设备执行任务的速度比8位设备快许多倍,所以活动模式中所用的时间更短,平均功率相应降低。其功耗如表2所示。表2 Cortex-M3能量消耗

  高端ARM处理器还支持功能更强大的电源管理功能,通过电压调节与频率调节相结合,极大地降低功耗,提高能量效率。动态电压调节(DVS)是通过对系统的负载预测,在一个开环电压控制系统中用多组能耗级别的频率、电压对来实现。自适应电压调节(AVS)用一个闭环电压控制系统来实现,它无需配对的频率、电压,能提供更优的节能效果。

  例如以TI的 OMAP1610(ARM926E核)处理器为例,内部可以调节参数包括:CPU电压,DPLL频率控制,CPU频率控制,交通控制器(TC),外部设备控制器,DSP运行频率,DSP MMU频率,LCD刷新频率。通过定义操作点(Operation Points,OP)数据结构来抽象表示频率、电压等能耗级别,如表3所示。表3 OMAP1610操作点参数

  其中,192MHz-1.5V操作点参数1500表示OMAP3.2核心电压1500mV;16表示DPLL频率控制12MHz晶振输入倍频16倍;1表示分频为1;1表示OMAP3.2核心分频为1(所以它运行在192MHz);2表示TC(交通控制器)分频为2(所以它运行在96MHz);如果使用TI的DSP代码,则后四个参数为不可控,均使用默认值

  更先进电源管理功能的嵌入式微处理器还有90nm工艺的Marvel PAX300系列,提供更细颗粒的电源管理技术(称为MSPM),API和驱动程序;飞思卡尔iMX31支持DVFS(动态的电压和频率调节)和DPTC(动态的处理器温度补偿)等技术,它配合飞思卡尔MC13783和MC34704 IC管理器件,Linux驱动和策略管理代码,用户可以方便地构建一个具备优秀电源管理能力的嵌入式系统

  ARM 与国家半导体(NS)开发出了先进的能量管理解决方案,智能能量管理器(IEM)预测软件决定了处理器可以运行的最低性能级别,同时,通过智能能量控制器(IEC)的帮助、通过自适应功率控制器(APC)与外部能量管理单元(EMU)一起工作,使处理器运行在能保证应用软件正确运行的最低电压和频率下。

  典型嵌入式系统能耗组

  典型嵌入式系统,例如移动终端,其能耗主要部件包括嵌入式微处理器(CPU)、内存、LCD及背光,电源转换部件,其他部件还可能包括基带处理器、DSP、外设控制器等。据统计,CPU占20%~25%,LCD以及背光占用了20%,内存占15%,电源转换占5%~10%,其他的组成占用剩余的30%~40%。典型嵌入式系统的能耗组成如图2所示。

  在这些元件中,有些元件性能指标和能耗固定;有些元件可在不同时间工作,并有多种可控的耗能状态。后者的有效使用成为系统节能的关键所在。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到