由于操作过于频繁,请点击下方按钮进行验证!

利用集成化开关稳压器简化电源设计

  一提到电源设计,大多数工程师都会感到挠头,他们往往会问“从哪里入手呢”。首先先必须确定电源的拓扑,包括降压、升压、flyback、半桥和全桥等,还要确定控制方案、电压模式、电流模式、固定导通时间等。其他问题还包括:(1)电源的频率特性如何?这将决定应该使用何种电感和电容,以满足输出纹波和负载暂态响应的要求。(2)为了确保整个电路在各种负载、温度条件下的稳定性,应该采用哪种补偿方案呢?(3)选择“合适的”MOSFET也并非小事一桩。驱动电路能否控制MOSFET的栅电容?寄生电容和Rds(on)又将如何影响总功耗?


  但需要回答的问题还不仅仅局限于此。PCB设计工程师可能会来告诉你,PCB板上没有足够的空间来容纳所有选定的元件。控制器应该放在哪里?或者,MOSFET、输入电容、电感、输出电容、控制电路等等又该放在哪里?采用何种接地方案?PGND和AGND在哪里连接?为了获得最佳的电磁干扰(EMI)性能或消除噪声干扰,如何才能尽量减少AC环路?散热器应放在哪里?气流的方向如何?应该使用多少过孔?


  上述这些问题表明,电源开关稳压器的设计不是一项简单的任务。但Intersil的集成化FET DC/DC稳压器使降压电源转换器的设计变得轻松自如。这些IC芯片内部已经解决了大多数棘手问题,并对各种配置进行了优化,如MOSFET尺寸、驱动电路、电流感应元件及限流、环路补偿、温度补偿及过热保护等。开关频率高达1MHz以上,因此可以使用小型电感和陶瓷电容,这些电感和电容是许多制造商的标准产品。最后,对于大多数解决方案,Intersil还提供了评估电路板和推荐的PCB设计,供客户参考。


  集成化FET DC/DC转换器的优势


  图1是一个完整的4A转换器的典型应用电路,采用ISL8014芯片。这种电路仅需极少的外部组件。图2是ISL8014集成FET硅芯片的框图。同一个芯片集成了众多的特性和功能,从而使得电源设计变得非常轻松。



图1:4A集成FET功率转换器的典型应用示意图。


 1.内置MOSFET


  请注意图2具有VIN管脚到LX管脚的高边功率P沟道MOSFET,以及LX管脚到PGND管脚的低边N沟道MOSFET,因此不需要再浪费时间去寻找合适的MOSFET。这些内置MOSFET与驱动电路一起,在开关频率、负载电流、输入电压、温度范围等方面可以满足广泛的应用需求。

 图2:4A集成FET功率转换器内部电路框图。


  驱动电路的上升和下降时间约为3ns,在EMI噪声和功耗之间达到了最佳平衡。非重叠时间、高边和低边MOSFET的开/关转换时间(或称死区时间)都得到很好控制,以免出现直通现象。在LX到PGND管脚之间,不需要另外使用肖特基二极管来提高效率。开关波形请见图3a和图3b。

 图3a:LX 开关波形(降压)。

 图3b:LX开关波形(升压)。

 
  2.断续模式与连续模式


  可供设计人员选择的集成稳压器很多。对于不过分考虑成本的产品,Intersil提供一种标准的降压稳压器,该稳压器在轻载时采用断续模式(DCM),并需要外接功率肖特基二极管。另一方面,还有很多不需要外接肖特基二极管的同步降压稳压器,可以工作在连续模式(CCM)及/或DCM模式。

 
  3.内置与外接环路补偿


  Intersil提供的大多数低输入电压稳压器均具有内部补偿功能,设计人员不需要保证每种工作条件的稳定性。所选择的参数支持规格书中列出的大多数典型应用。对于额定输入电流范围更宽或额定输出电流较高的稳压器,则采用外部补偿,以获得更大的灵活性。产品规格书提供了清晰的说明和设计指南。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到