由于操作过于频繁,请点击下方按钮进行验证!

基于PLC的伺服控制系统在密封垫圈绕制系统中的应用

摘 要:介绍了基于PLC控制的伺服电机系统在密封垫圈绕制中的应用,阐述了密封垫圈绕制系统中PLC控制的设计,讨论了系统硬件和软件设计,包括电气线路设计、软件编程设计、文本通讯、PLC控制伺服电机定位和电焊机工作的设计。
0 前言
  PLC是在传统的顺序控制器的基础上引入了微电子技术、计算机技术、自动控制技术和通讯技术而形成的一代新型工业控制装置,目的是用来取代继电器、执行逻辑、记时、计数等顺序控制功能,建立柔性的程控系统。PLC具有通用性强、维护方便、可靠性高、抗干扰能力强、编程简单等特点,已在工业自动化领域得到了广泛的应用。特别是在电机控制上,PLC集成了专用的控制指令集,这可大大缩短编程者对程序的开发时间,提高调试的效率。
  位置伺服系统,一般是以足够的位置控制精度(定位精度)、位置跟踪精度(位置跟踪误差)和足够快的跟踪速度作为它的主要控制目标。系统运行时要求能以一定的精度随时跟踪指令的变化,因而系统中伺服电动机的运行速度常常是不断变化的。故伺服系统在跟踪性能方面的要求一般要比普通调速系统高且严格得多,并且不会出现象步进电机在高速状态下旋转运动时出现“脱步”等现象,其在位置控制方面具有相当高的精度而且在高速旋转运动时具有与低速运动状态下相同的转矩,即可以实现恒转矩运行。伺服电机的以上一些特性可以很好地满足本系统的设计需要。
  密封垫圈在石油管道、液气压系统等诸多领域内有着广泛的用途,是一种密封性极其优良的产品。主要原材料包括钢带和石墨等,因为其良好的密封性,所以在全球的需求量非常庞大,企业为提高其生产效率,要求采用自动生产设备。
  该生产系统现大都采用的是手工操作的方式,在生产过程中,时刻需要人工干预产品的生产过程,通过测量来确定产品是否符合工艺要求。比如,时刻需要用游标卡尺来测量产品的外径来保证产品的质量;整个焊接过程完全由人工操作,自动化程度低,产品的生产效率低下,已无法满足日益增强的竞争需要,所以提高效率迫在眉睫。
1 系统组成
  根据生产工艺的要求和对实际系统的测量,预估电机带动模芯运行所需的力矩和运行速度,综合不同规格下的各种要求,选取了PLC作为控制系统,驱动伺服电机和焊机,采用文本显示器设置相应参数。
  1.1 硬件部分
  本系统电气硬件控制电路的设计,主要包括保护电路、电源变换电路、伺服电机驱动部分电路、伺服电机供电电路和控制电路。对于伺服电机的控制采用PLC作为主控制器,主要控制线有4根:伺服使能信号线、指令脉冲输出信号线、伺服电机旋转方向控制线和伺服电机故障信号输出线。前3根信号线的引出主要是对伺服电机的位置运动进行控制,通过相应设置和程序设计来达到要求的精度。故障输出信号线主要是对电机的不正常运行进行保护,比如电机的过流、过压运行等。通过适当的程序来对故障信号进行处理,保证伺服系统运行的安全性和可靠性。除此之外,还安装了急停按钮对特别紧急事件进行处理,以保证系统的安全性。
  电气主电路主要由空气开关、熔断器(保险丝)、电源指示灯、接触器、电源开关按钮、急停开关按钮等组成。功能是保证220V电源供电的安全性与可靠性,同时,熔断器等可以对后续电路过流等情况起到一定的保护作用。220V交流电源电压经过转换变成24V直流电源电压驱动电磁阀工作,控制气缸的动作与释放。PLC开关量输人中有2个光电开关量的输入,主要为钢带和石墨缺料时的信号输入,通过PLC程序来控制伺服电机和各机械部件在上述状态时的运动。
  1.2 软件部分
  软件设计主要对输入的开关量等信息进行分析、处理、综合后输出控制信号来对伺服电机和执行部件(主要为焊机)进行可靠的运动控制。满足系统控制精度的要求。
  在实际生产过程中,由于石墨带的刚度不够,在绕制过程中容易发生断裂等问题。因此在实际程序设计中要求伺服电机在启动和制动过程均要有加减速时间以防止电机产生速度突变,造成石墨带的断裂和危及操作人员的安全。根据系统要求,将系统运行状态中的某些参数通过通信模块显示于文本屏上,达到实时监控的目的。其中参数主要为产品工艺的要求参数,比如焊点数、材料绕制的圈数等参数的实时显示。文本显示器除了显示功能外,还集成了参数设置的功能,主要是对生产的产品规格型号的选择和绕制圈数的设定。通过规格型号的选择来确定焊机动作与释放时间的分配和伺服电机转速的设定,使两者达到合理的配合,最大限度地提高产品的生产效率。通过对产品绕制圈数的设定可以实时控制产品的合格率并可以随时按生产要求来选择生产产品的规格。打破了手工操作下,能生产的产品比较单一的缺点(规格少),提高了设备的利用效率。
2 系统问题及解决方案
  2.1 伺服电机定位问题
  本次系统设计中主要存在的问题是模芯的精确定位。当一个产品制作完成后,怎样才能使模芯在高速回归原点时与压轮压下的位置的偏差不超过1mm。考虑到伺服电机的高精度定位功能,设计中采用了记录全程脉冲数的方法。这种方法充分利用了伺服电机的高精度定位功能,实现高效率的精确定位。在整个系统设计中,将PLC的Y0口作为伺服电机脉冲的输出端,因此利用PLC指令集中的特殊功能存储器D8140,D8141来记录PLC发给伺服电机的脉冲数并将其累加。通过运算求出不到一圈的脉冲数,再用一圈的脉冲数减掉上面的运算结果。将此结果的脉冲数再通过PLC的Y0口发给伺服电机来控制其回归原点。如果仅用以上方法即使回归了原点但其仍无法满足1mm的精度要求,需要对伺服驱动器参数设置中的21号参数(零偏差幅度)进行相应计算设定。因为伺服驱动器出产时21号参数一般是400脉冲,当要求定位的精度很高时,这个默认的参数是不适合的。可以通过式(1)进行计算来确定需要的参数值。
   (1)
  其中:132072为电机旋转一周所需的脉冲数,为固定值,单位为脉冲/周;S为每转一周的移动量,单位为m;J为系统所要求的精度,单位为m;P为零偏差幅度,单位为脉冲。
  对于本系统,模芯采用最小尺寸,S=0.580 9m,J=0.001m,可求得P=226脉冲;(实际电机旋转一周需要的脉冲可以通过调节驱动器的电子齿轮比参数得到)考虑到系统的转速比接近1:10,所以P可以取20脉冲。综合考虑各种规格之后可以取最小值P=1脉冲。
  在软件设计中还应要使用特殊辅助继电器M8145,其功能是停止Y0口的脉冲发送(立即停止)。采用程序驱动M8145可以防止伺服电机在发送脉冲时的过脉冲现象,提高定位的精度。
  2.2 焊机的时间控制问题
  对焊机的开始放电时间的精确控制直接关系到产品的质量。对于密封垫圈其要求在第一轮启动焊接的时候能够达到在电机带动模芯旋转一圈的过程中,按顺序先5—l0mm焊接3个点,然后再以40—50mm的距离焊接剩下的点。在这个过程中要保持电机有一定的转速,大概20r/min,还要保持焊点的均匀、美观和一定的强度。在设计中将电焊机的时间控制模式改为“1”(外部时间控制),又鉴于PLC的扫描方式不同于一般的单片机芯片,所以要考虑程序的扫描周期。在以上转速下利用公式(2)算得可以启动电焊机工作的时间:
  S=V×T (2)
  式中:S为焊接距离;V为电机运动速度;T为电焊机可以工作的时间范围。
  算得时间T,加上扫描时间就是焊机要动作的时间范围,对其进行启动和释放时间合理分配。该系统中电焊机启动时需要l0ms的高电平维持时间(实际设定),才能进入稳定的放电状态,而且焊机的响应时间存在不稳定性,所以设定电焊机启动时高电平维持时间为20ms,电焊机可以很好地进行工作,达到控制的需要,保证焊点的质量。
3 结论
  经过现场安装与调试,本系统其性能比传统的手工操作系统优良。而且体积小,结构也简单,为日后的维护和功能扩展奠定了良好的基础,精度能够达到要求,大大提高了效率,操作也更加简单方便。对操作人员来说,也更加安全可靠。


声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:

分享到