通过回顾标准可见,PoE链接容许受电设备(PD)从供电设备(PSE)吸取最多12.95W的功率。PoE链接或端口受到PSE的控制,PSE通过在上电前的检测和分类,可以识别 PD并监测该端口(ICUT、ILIM和断开)。PSE承担了大部分PoE的负担,它必须检测PoE并无缝地断开电源,以避免损坏原有的设备。如果PSE 不能充分地执行分类、供电和监测等功能,那么,就可能出现间歇性故障并造成供电不稳定。PSE不能控制一切;当它提供电源的时候,它相信PD是符合标准的,并以无振荡的方式打开电源,从而避免吸取比要求更多的功率。因为两类设备都必须协作,所以,PD和PSE设计工程师要从两设备的观点出发考虑设计问题。
新兴应用需要更大的功率
13W对于基本功能IP电话是足够的,但是,对于电动摄像机、多点无线接入和大屏幕彩色显示器等应用,功率却严重不足。IEEE目前正在制订更大功率的标准,称为PoE+(官方称为IEEE 802.3at)将与目前可用的 802.3af设备共存。由新标准定义的最终功率级别还没有确定,但是,到目前为止,很可能我们将看到30W的两对供电系统和60W的4对供电系统。 IEEE 802.3at委员会已经下达了令人畏缩的任务,要定义一种安全、更大功率、后向兼容并与现已部署的802.3af设备互通的全球标准。因为编写这种规范的复杂性很高,我们预期从现在开始算起,一到两年内不可能看到最终规范。
虽然典型的CAT 5电缆有四对双绞线,但是, 802.3af标准仅仅容许其中两对线在给定时间内传送电流。一种选择是容许第三和第四对线传送额外的电流,从而使可用功率翻一番。第二种选择是提大电流的限制,容许相同的线对传送更大的功率。这些技术都已经出现在专用的PoE系统之中。然而,每一种方法都有缺点,使在它们之间作出选择更为复杂。
实现准标准大功率PSE
在过渡时期,有些应用需要大功率,等待新标准的到来显然是不现实的。为此,有几种解决方案。下列是构建在符合基本802.3af标准之上的电路(翻译注释: complaint应该是compliant),图1a所示PSE电路采用LTC4258,图1b所示PD电路采用LTC4257。如果该应用需要断开交流,在PSE电路中可以用LTC4259取代;如果应用要集成开关调整器,在PD电路中可以采用LTC4267取代。
大功率工作
下列电路例子展示了实现大功率工作的几种办法。注意:在下面的一些PSE电路中,通道4被用于描述电路的变化,但是,也可以采用任何其它通道。
两对大电流方案
通过简单地改变传感器电阻的数值(图1a中的RS1到RS4),就可以增加PSE的功率级别。RSn被设为0.5Ω,符合802.3af标准的规定 (375mA ICUT, 425mA ILIM)。例如,将RSn减小到0.25Ω,就可以把电流限制增加一倍(750mA ICUT, 850mA ILIM)。当采用短电缆时,这就可以把PD功率增加一倍;如果电缆较长,其损耗就会增加,从而把传递给PD的功率限制为小于原来的两倍。
注意,LTC4258也采用传感器电阻来检测直流的断路。把该电阻的数值减少到0.25Ω,直流断路门限就可以增加一倍,技术上就不符合标准的要求。其它 802.3af参数就不受影响:检测和分类仍然符合标准的要求;而交流断路门限(仅仅对LTC4259)不受传感器电阻变化的影响。因为所提高的直流门限存在断开非常低功率的802.3af PD的风险,尽管这种风险比较小;对于具备802.3af PD的互通性,推荐采用交流断路。
要改变每个通道的其它两个元件,以处理额外的电流。典型情况下,MOSFET Q4要用较大的器件取代,以在电流限制期间承受更大的功率。在这种应用中,采用D2PAK封装的IRF530类器件就足够了。此外,也要指定PoE数据磁性模块以承载更高的电流。几家磁性元件供应商最近推出了具有足够电流能力的器件。
通过增加两个新元件,我们可以在符合802.3af的工作和大功率条件两者之间进行切换。在这种情形下,RS4要设置为原始的 0.5Ω数值,并要选择RS4B,以便RS4 II RS4B提供期望的更大电流。把RS4B设置为0.5Ω(与RS4的数值相同),就可以把大功率模式设置为802.3af的功率电平的两倍。
当Q4B关闭的时候,端口工作在符合802.3af标准的模式。打开Q4B开关,端口就工作在大电流模式。这种切换可以在任何时间进行:在检测/分类之前;在检测/分类之后,但是要在端口上电之前;或在供电之后。注意,Q4B可以采用低压 MOSFET,因为仅仅Q4的漏极具有高端口电压。Q4B要选择导通电阻非常低的MOSFET,以防止在更大电流限制中精度不够。例如, IRLML2502就是采用SOT-23封装的一种合适的器件。
对PD的改变稍微复杂一些(图2b),因为内部的MOSFET被预先配置为工作在375mA限制电流。然而,添加受PWRGD引脚控制的外部无源器件,就容许工作在大电流模式;与此同时,维持完整的802.3af检测和分类特征,且限制瞬间峰值电流。
四对小电流方案
为了增加传递到PD的功率,另外一种技术是在CAT-5电缆中为所有四对线供电。图4a所示为四对PSE电路,其中每一对都具有标准的802.3af电源。对传感器电阻的数值不需要作出变更。
四对PD电路是最大的变化(图4b)。现在需要采用两个LTC4257器件,电源电路必须具备足够的智能,以便把从每一个通道吸取的电流限制在 802.3af规范容许的范围之内。要做到这一点,就要平衡从每一对线吸取的电流或平衡从每一对线吸取的功率,直到它接近(但是不超过)ICUT极限,然后,才从其它线对吸取电流。这种电路可能相当复杂,不同的设计之间差异也很大。
四对技术(four-pair technique)的优点是利用了电缆中的所有导线,最大限度地减少了总的电缆阻抗及长电缆所产生的功率损耗。任何利用标准电流的大功率技术也完全接近符合802.3af标准,因为仅仅采用信号对或备用对就能够符合标准的要求。主要缺点是复杂性高,价格昂贵。PSE的每一个端口需要两个通道的控制器芯片,将端口密度减少了一半;而PD需要两个通道和附加的电流平衡电路,以确保从每一对线吸取的电流不超过最大值。此外,如果只有信号对具有连续性,四对技术就不管用,正如在一些CAT-3建筑安装中看到的那样。
因为四对线方案的成本昂贵且复杂性高,在中等功率级别,人们宁愿采用两对大电流技术。只有当PD功率上升到35W以上,四对系统才最为适用。
四对大电流方案
把大电流电路与四对连接结合起来,可以沿着电缆比其它任何技术传递更多的功率。四对大电流容许沿着100米的CAT-5电缆向PD传递50W的功率,如果电缆长度缩短的话,所传递的功率要更大。尽管这种方案存在所有以前方案的缺点,但是,所传输的功率却最大。对于50W以上的功率,长的电缆很快会出现“阻抗匹配”问题,在此,电缆所消耗的功率比传输给PD的功率还要大。如果缩短电缆的长度,就可以进一步增加电流,其数值最终受限于RJ45连接器、磁性元件的偏置电流和CAT-5电缆中温度上升的程度。极大功率(>50W)电路只应该用于由同一供应商指定整个解决方案的系统之中。
分类:何时适用大功率
特别情况下,如果不采用上述电路,一种办法就是确定何时把大功率施加在线路上。在正常情形下,所有技术都将成功地为符合802.3af标准的PD供电。双门限电路需要从PD获取一些信息以了解何时切换门限;而四对方案需要了解何时才适合切换到第二组导线。IEEE 802.3at委员会正在努力解决这些问题,但是,还没有确定最终方案。在过渡时期,需要采用特殊的方案来识别大功率PD。
802.3af定义了不使用的类(第四类),看起来就像为大功率PD特制的;LTC4258/59 PSE芯片和LTC4257/67 PD芯片都支持第四类。幸运的是,第四类PD如果插入标准的 802.3af PSE之中的话,它就可以采用第三类限制电流供电;而如果它试图吸取更大的功率,它就会重复地打开和关闭。第四类可以被用作为连接了大功率PD的“报警”信号,但是,建议在传输更大功率之前,先发出一个附加的握手信号。理想情况下,大功率PD应该从大功率PSE接收某种信号,确认“工作在大功率模式”是可接受的。如果没有收到握手信号,PD就应该向用户发出某种信号,表示它插入了错误类型的PSE。
声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。
- 暂无反馈