由于操作过于频繁,请点击下方按钮进行验证!

基于PLC和组态软件的水塔控制系统

在传统的水塔/水箱供水的基础上,加入了PLC及液压变送器等器件.利用PLC和组态软件来实现水塔水位的控制.提供了一种实用的水塔水位控制方案。

控制系统组成

1.系统的工作原理

供水系统的基本原理如图1所示,水位闭环调节原理是:通过在水塔中的三个液压变送器,将水位值变换为4~20mA电流信号进入PLC,把该信号和PLC中的设定值的程序进行比较,并执行较后程序,通过水泵的开关对水塔中的水位进行自动控制。当PLC出现故障时,还有一套手动控制来进行对水塔水位控制。手动控制采用交流接触器。


当上水箱液位低于Y3时,M1、M2同时工作,F2打开。液位上升至Y2时,M2停止,F2关闭,M1继续工作。液位上升至Y1时,M1也停止。打开F1手阀使上水箱放水,液位下降。当液位又低于Y1时M1起动工作,如F1开度较大下水量大于上水量,使液位继续下降至Y2时,M2启动工作同时F2打开,使上水量大幅上升,保持液位。Y0为下水箱缺水报警开关,当下水箱液位低于Y0时意味着水泵进水口缺水,此时应自动切断电源并报警。

2.PLC的选择

由于该系统为中型PLC自动控制系统,要求PLC能够提供可编程逻辑分析和PID功能,故选用中达公司生产的台达DVP14ES00R可编程逻辑控制器。台达DVP14ES00R具有标准的输入、输出及通信单元,可用于较为恶劣的环境中。主要配件有中央处理器CPU,电源单元PSE,I/O单元。包括数字输入板IDP G、数字输出板ODPG、附属单元。

3.供水的控制方法

系统的硬件接线图如图2、3所示。从整个流程中可以看到两套控制方式:①由一台可编程序控制器来控制两台水泵的自动运行。②由交流接触器来控制两台水泵的手动运行。当换项开关KKl打到手动时,按下起动按钮SBl,1#泵起动运行向水塔注水,由于设置了顺序开启和逆序关闭,在1#泵没有开起的情况下,2#泵不能起动运行,而在两个水泵同时运行时,2#泵在没有停止的情况下,1#泵不能够停止。现在1#泵运行的时候,按下起动按钮SB2,2#泵起动运行向水塔注水。此时,控制台上的水位灯,由水塔中的液位变送器将水位变换为4~20mA电流信号输入到PLC中,经IDPG将其转换为数字信号。该信号与水位给定值进行比较,由PLC输出一个控制信号经ODPG转换控制信号点亮此时水塔水位所在的水位灯。当换项开关KK1打到自动时,系统将根据水塔中水位的情况,通过在水塔中的液位变送器送出的4~20mA电流信号由PLC接受并对其于给定值进行比较,执行事先编译好的程序。程序流程是:在水塔中无水时,1#、2#泵同时开起,对水塔进行注水;水位到达低水位时,控制台上的低水位灯点亮;水位到达中水位时,2#泵停止,1#泵继续运行,中水位灯点亮;水位到达高水位时,1#、2#泵都停止,高水位灯点亮。而当下水箱水位到达报警水位的时候,报警器开始报警,并切断1#、2#泵的运行。


系统各种功能的实现

1.水位显示及报警功能

为了及时观测到水塔中的水位,特别在控制台上安装了4盏水位显示灯,并将它们与PLC连接,根据变送器给PLC的信号,由PLC输出信号开启这4盏水位灯来显示当前水塔水位的情况。其中一盏灯是报警灯,在下水箱缺水的时候进行报警,提醒工作人员前来处理。

2.手动/自动功能

为了系统能正常运行,设置两套手动/自动运行方式。手动方式是利用继电器-接触器控制,可以在环境比较恶劣的条件下继续工作,自动方式是利用PLC来控制。

3.组态软件功能

在这里利用组态软件的采集数据的功能,对水塔的水位进行实时监控,通过实际的数字和图表反映出现在的水位状况。



声明:本网站所收集的部分公开资料来源于互联网,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,也不构成任何其他建议。本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,不为其版权负责。如果您发现网站上所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容,以保证您的权益!联系电话:010-58612588 或 Email:editor@mmsonline.com.cn。

网友评论 匿名:
相关链接
  • hyperMILL: 可处理任何制造任务的 CAD/CAM 软件
  • 24-12-19
  • Inventor 支招 | 消声器II-模态回避
  • 24-12-18
  • 设计仿真 | 海克斯康VTD智能驾驶仿真方案—Camera
  • 24-12-16
  • 设计仿真 | Adams-Marc联合仿真帮助客户准确模拟车门关闭过程
  • 24-12-16
  • OPEN MIND 2025新年寄语:新质生产力引领未来发展
  • 24-12-16
  • 设计仿真 | 使用人工智能方法扩充Sabic材料数据
  • 24-12-16
  • 生产制造 | SMIRT自动优化DieNC 铣床页面路径中的共线点
  • 24-12-16
  • 质量管理 | 海克斯康 Q-DAS赋能电子行业数字化质量管理
  • 24-12-16
  • 海克斯康收购3D Systems公司的Geomagic 3D质量控制和尺寸检测软件
  • 24-12-16
  • 赢好礼 | ​PolyWorks 2024 客户满意度调查活动正式开启!
  • 24-12-13
  • Inventor 支招 | 钢球冲击练习
  • 24-12-12
  • 数字化工具赋能上汽大赛:激发年轻一代汽车设计新可能
  • 24-12-12
  • 推动智能升级,携手实现高质量发展——中国铁道工程建设协会赴欧特克考察交流
  • 24-12-12
  • Tebis智造平台,为企业创造更大价值
  • 24-12-12
  • 质量管理 | 海克斯康数字化质量管理平台助力企业质量体系文件管理
  • 24-12-09
  • 生产制造 | 模具设计与制造-VISI教您如何展开轴类冲压件
  • 24-12-09
  • 设计仿真 | Cradle CFD 助力 NextLeap Aeronautics公司进行无人机快速开发
  • 24-12-09
  • 直播预告 | 智能化高效编程加工技术与新功能增强简介
  • 24-12-09
  • 直播预告 | 非线性在汽车结构仿真中的典型应用
  • 24-12-09
  • 前10个月我国软件业务收入同比增长11%
  • 24-12-06
  • 分享到

    相关主题